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Overview of components

DREAMS

● Link optimization–optimizes links for quality and bandwidth

● Bundle prediction–predicts future scheduled and unscheduled network traffic

● Routing algorithm–routes bundles from one node to another

● Scheduling algorithm–schedules transmission times for bundles given routes

● Conflict resolution-resolves conflicts from distributed scheduling and reschedules bundles



Link Optimization

● Deep Reinforcement Learning

● Distributed Distribution Deterministic Policy Gradients (D4PG) to select link parameters (power, 

modulation scheme, coding scheme, symbol rate, etc.) to maximize Quality of Service

● Kratos’s OpenSpace QuantumRadio Software Modem Capabilities
○ Tx/Rx modulation schemes, coding schemes, power, roll-off, frequency

○ Delay, varying matched filters, doppler effect, simple noise

○ Gives statistics such as EbN0, BER, effective bandwidth

● OpenAI Gym Environment using Kratos’s API





Bundles

● Bundles
○ Creation time

○ Source

○ Destination

○ Size

○ Deadline

○ Priority

○ Type

● Bundles -> SuperBundles with the same properties



Bundle Prediction

● Input: Traffic history (bundles)

● Neural network outputs, for a given scheduled event, the expected bundles and metadata

● Neural network outputs, the expected bundles not tied to any scheduled event and metadata

● Output: Predicted traffic, which is allocated in DREAMS’s schedule



Scheduled Packet Predictor Unscheduled Packet Predictor



DREAMS Scheduling





Routing and Scheduling

● Two components:
○ Route Finder (only finds feasible (i.e. meet deadlines) routes)

■ N fast routes

■ M less-congested routes

■ B balanced routes

○ Bottleneck Scheduler (BNS)

■ Uses the BNA algorithm to optimize overall throughput by utilizing low congestion routes for each 

bundle when possible



Routing 

● Viz-Dijkstra
○ Visibility aware Dijkstra’s shortest path algorithm
○ Mark nodes/vertices with visit times, only consider visibilities after arrival time for next hop
○ Optimal if FIFO constraint on cost functions, e.g., cost proportional to time
○ Cost is a convex combination of a visibility congestion term and time

● Apply Viz-Dijkstra Temporal Graph
○ Vertices are now nodes in a slice of time (edges updated accordingly)
○ Better approximates optimal cost when FIFO violated (optimal for sufficiently small steps)

● Subset of nodes routing
○ NP-Hard (equivalent to Steiner Tree problem)
○ Approximate with Dijkstra’s + post-pruning (tighter approximation schemes tend to be too slow)

● Multi-route finding
○ Adjust Congestion/Time cost for proposing low-congestion vs fast routes
○ Remove targeted edges and reroute to propose multiple decorrelated routes



Traditional Priority-Based Scheduling Algorithms

Sort tasks/bundles by priority, break ties with deadlines.

Schedule tasks / transmit bundles in the above order, greedily choose best (usually = fastest) route based 

on local information

First thing everyone thinks of;           Simple;           Easy to implement;          Runs fast (linear)

But it is notoriously a very bad algorithm and produces severely suboptimal results

Problem is that being greedy and only using local information is not particularly good for overall schedule
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Centralized Scheduling Scenario Performance

● Satellites and groundstations located on and around the Earth and Moon with realistic orbits

● 2 hour scenario

● 22 nodes, 300 links, 360 visibilities

● Routed: ~ 3562000 packets ->3562  bundles routed

● Java Runtime: 55 seconds (scales linearly with respect to scenario size in each direction) working 

on additional optimizations, including porting to an optimized C++ implementation

● Semi-Naive (fastest route only but included lookahead with BNS) Routed: 2792 / 3562= 78% 

(similar results in other scenarios)



Distributed Scheduling



Distributed Simulation Environment

● CORE+EMANE
○ Realistic network emulator

○ Packet Generator feeds into CORE+EMANE as a custom “service”

● HDTN implemented as a service

● DREAMS fulfills router and scheduler roles in HDTN



Distributed Architecture

● DREAMS’s scheduling is inherently a distributed algorithm

● Deploy one instance of DREAMS on each node

● Use diffs for updating schedule to minimize network overhead







Distributed Conflict Handling

● Centralized scheduling for predicted traffic (and baseline connectivity tasks)
○ Expected to be a high percentage of the overall traffic

● Unpredicted traffic scheduled by originating node
○ Resource conflicts unavoidable

● Nodes only reschedule descendant tasks and handle immediate conflicts

● Diffs generated and propagated to the rest of the network


