
DREAMS DTN

June 21, 2023

Overview of components

DREAMS

● Link optimization–optimizes links for quality and bandwidth

● Bundle prediction–predicts future scheduled and unscheduled network traffic

● Routing algorithm–routes bundles from one node to another

● Scheduling algorithm–schedules transmission times for bundles given routes

● Conflict resolution-resolves conflicts from distributed scheduling and reschedules bundles

Link Optimization

● Deep Reinforcement Learning

● Distributed Distribution Deterministic Policy Gradients (D4PG) to select link parameters (power,

modulation scheme, coding scheme, symbol rate, etc.) to maximize Quality of Service

● Kratos’s OpenSpace QuantumRadio Software Modem Capabilities
○ Tx/Rx modulation schemes, coding schemes, power, roll-off, frequency

○ Delay, varying matched filters, doppler effect, simple noise

○ Gives statistics such as EbN0, BER, effective bandwidth

● OpenAI Gym Environment using Kratos’s API

Bundles

● Bundles
○ Creation time

○ Source

○ Destination

○ Size

○ Deadline

○ Priority

○ Type

● Bundles -> SuperBundles with the same properties

Bundle Prediction

● Input: Traffic history (bundles)

● Neural network outputs, for a given scheduled event, the expected bundles and metadata

● Neural network outputs, the expected bundles not tied to any scheduled event and metadata

● Output: Predicted traffic, which is allocated in DREAMS’s schedule

Scheduled Packet Predictor Unscheduled Packet Predictor

DREAMS Scheduling

Routing and Scheduling

● Two components:
○ Route Finder (only finds feasible (i.e. meet deadlines) routes)

■ N fast routes

■ M less-congested routes

■ B balanced routes

○ Bottleneck Scheduler (BNS)

■ Uses the BNA algorithm to optimize overall throughput by utilizing low congestion routes for each

bundle when possible

Routing

● Viz-Dijkstra
○ Visibility aware Dijkstra’s shortest path algorithm
○ Mark nodes/vertices with visit times, only consider visibilities after arrival time for next hop
○ Optimal if FIFO constraint on cost functions, e.g., cost proportional to time
○ Cost is a convex combination of a visibility congestion term and time

● Apply Viz-Dijkstra Temporal Graph
○ Vertices are now nodes in a slice of time (edges updated accordingly)
○ Better approximates optimal cost when FIFO violated (optimal for sufficiently small steps)

● Subset of nodes routing
○ NP-Hard (equivalent to Steiner Tree problem)
○ Approximate with Dijkstra’s + post-pruning (tighter approximation schemes tend to be too slow)

● Multi-route finding
○ Adjust Congestion/Time cost for proposing low-congestion vs fast routes
○ Remove targeted edges and reroute to propose multiple decorrelated routes

Traditional Priority-Based Scheduling Algorithms

Sort tasks/bundles by priority, break ties with deadlines.

Schedule tasks / transmit bundles in the above order, greedily choose best (usually = fastest) route based

on local information

First thing everyone thinks of; Simple; Easy to implement; Runs fast (linear)

But it is notoriously a very bad algorithm and produces severely suboptimal results

Problem is that being greedy and only using local information is not particularly good for overall schedule

BNS Best
Route
Selector

Centralized Scheduling Scenario Performance

● Satellites and groundstations located on and around the Earth and Moon with realistic orbits

● 2 hour scenario

● 22 nodes, 300 links, 360 visibilities

● Routed: ~ 3562000 packets ->3562 bundles routed

● Java Runtime: 55 seconds (scales linearly with respect to scenario size in each direction) working

on additional optimizations, including porting to an optimized C++ implementation

● Semi-Naive (fastest route only but included lookahead with BNS) Routed: 2792 / 3562= 78%

(similar results in other scenarios)

Distributed Scheduling

Distributed Simulation Environment

● CORE+EMANE
○ Realistic network emulator

○ Packet Generator feeds into CORE+EMANE as a custom “service”

● HDTN implemented as a service

● DREAMS fulfills router and scheduler roles in HDTN

Distributed Architecture

● DREAMS’s scheduling is inherently a distributed algorithm

● Deploy one instance of DREAMS on each node

● Use diffs for updating schedule to minimize network overhead

Distributed Conflict Handling

● Centralized scheduling for predicted traffic (and baseline connectivity tasks)
○ Expected to be a high percentage of the overall traffic

● Unpredicted traffic scheduled by originating node
○ Resource conflicts unavoidable

● Nodes only reschedule descendant tasks and handle immediate conflicts

● Diffs generated and propagated to the rest of the network

