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Goal

Find a way to look under the hood of a given neural network
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Category Theory

A category is a collection of related objects...

•• e.g. the category of all sets

•• e.g. the category of all (real) vector spaces

...along with a collection of arrows between objects

•• e.g. for sets X and Y , all functions from X → Y

•• e.g. for vector spaces W and V , all linear transformations from W →V
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Definition

A category C has

•• Objects Ob(C)

•• For A,B ∈ Ob(C), all morphisms A → B; denoted hom(A,B)

Composition is allowed: if there is a relation f : A → B and g : B →C, then

Then g◦ f ∈ hom(A,C)

A B C
f g

g◦ f
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Usage I
Categories form a system out of related objects and their morphisms

Geometric Algebraic

0

Z×Z
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Usage II
Categories can be mapped to other categories using functors

Geometric Algebraic

0

Z×Z
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Goal restated

Use category theory to study neural networks
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Example 1

Let C have integers as objects - {. . . ,−3,−2,−1,0,1,2,3, . . .}

For any two integers x and y, define

hom(x,y) =

{
φxy x ≤ y
∅ else

· · ·
−3 −2 −1 0 1 2 3

· · ·
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Example 2
Let C have one object •

The morphisms from • to itself are

hom(•,•) = Z

Composition is given by addition

4
12

12◦4 = 16
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Example 3
Let C have natural numbers as objects - {0,1,2,3, . . .}

The morphisms from m to n are

hom(m,n) = all m×n matrices

Arrow composition is given by matrix multiplication

0 1 2 3 4
· · ·

[
1 2

] [
3 4 5
6 7 8

]

[
15 18 21

]
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Example 4
Consider the power set of {x,y,z}: {∅,{x},{y},{z},{x,y},{x,z},{y,z},{x,y,z}}

Order by set inclusion to make a category: for any elements x,y define

hom(x,y) =

{
φxy x ⊆ y
∅ else

{x} {y} {z}

{x,y} {x,z}
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Example 4
Consider the power set of {x,y,z}: {∅,{x},{y},{z},{x,y},{x,z},{y,z},{x,y,z}}

Order by set inclusion to make a category: for any elements x,y define

hom(x,y) =

{
φxy x ⊆ y
∅ else

{x} {y} {z}

{x,y} {x,z}
⊂

∅

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

{x,y,z} is the terminal object
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First cut

We can define a category of neural networks NNet

•• Objects: natural numbers

•• Morphisms: hom(m,n) is all neural networks with m inputs and n outputs

•• Composition is concatenation where it makes sense

NNet has enough structure to define back propagation categorically!
(but I want more)
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Our approach

A neural network of length l is a sequence of functions(
Rn0 N0−→ Rn1 N1−→ ·· · Nl−1−−→ Rnl

)
The functions Ni will be referred to as layer functions of N.

Ni : Rni → Rni+1 by x 7→ σ(Ax+b)

Notation: we use σ for activation functions
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Example

3

-2

4
1

1

7

2

8

-6
-7

4

-3 R2 R2 R2
N0 N1

N0(x) = σ

((
1 4
−2 3

)
x+
(

7
1

))

N1(x) = σ

((
−7 −6
8 2

)
x+
(
−3
4

))

Note: in NNet this neural network is an arrow 2 → 2
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Morphisms

N = (N0,N1, . . . ,Nl−1) and M = (M0,M1, . . . ,Ml−1) are neural networks of length l

A morphism f : N → M is a sequence of functions ( f0, f1, . . . , fl) such that

fk ◦Nk−1 ◦ · · · ◦N1 ◦N0 = Mk−1 ◦Mk−2 ◦ · · · ◦M0 ◦ f0 for all 1 ≤ k ≤ l

Rn0 Rn1 . . . Rnl
N0 N1 Nl−1

Rm0 Rm1 . . . Rml

M0 M1 Ml−1

f0 f1 fl
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A new hope

We can form a new category whose

•• objects are neural networks of length l

•• morphisms are appropriate sequences ( f0, . . . , fl)

What’s left? Composition

This is done layer by layer:

( f0, f1, . . . , fl)◦ (g0,g1, . . . ,gl) = ( f0 ◦g0, f1 ◦g1, . . . , fl ◦gl).
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Categories of neural nets

Recall layer functions:

Ni : Rni → Rni+1 by x 7→ σ(Ax+b)

We can make several categories by picking the activation function σ:

AffineNetl Ni required to be an affine function followed by any activation function
ReluAffineNetl Ni required to be an affine function followed by ReLU activation function

Category note: ReluAffineNetl is a subcategory of AffineNetl
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Isomorphisms
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Isomorphisms II
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Terminal objects

The terminal network T is given by

R0 0−→ R0 0−→ ·· · 0−→ R0

Let N be an object of AffineNetl or ReluAffineNetl

There is a unique morphism N → T
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Initial objects

The initial network I is given by
∅→∅→ ··· →∅

Let N be an object of AffineNetl or ReluAffineNetl

There is a unique morphism I → N
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Products

Let N and M be objects of AffineNetl or ReluAffineNetl

Their product N ×M is given by

Rn0 ×Rm0 Rn1 ×Rm1 . . . Rnl ×Rml
N0 ×M0 N1 ×M1 Nl−1 ×Ml−1

N ×M is in AffineNetl or ReluAffineNetl
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Ideas

1. Extend these definitions to allow networks of different lengths

2. Find interesting morphisms between realistic networks

3. Explore categorical constructions, such as equalizers

4. Use subobject language to describe subnetworks

5. Employ machinery of other categories using functors
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