Categories 000000000 Neural Networks

Categorical Properties

Future work

Categories of Neural Networks

Neural Networks

Categorical Properties

Future work

Find a way to look under the hood of a given neural network

Categories ●○○○○○○○○ Neural Networks

Categorical Properties

Future work

Category Theory

A category is a collection of related objects...

Categories ●○○○○○○○○ Neural Networks

Categorical Properties

Future work

Category Theory

A category is a collection of related objects...

- e.g. the category of all sets
- e.g. the category of all (real) vector spaces

Neural Networks

Categorical Properties

Future work

Category Theory

A category is a collection of related objects...

- e.g. the category of all sets
- e.g. the category of all (real) vector spaces

...along with a collection of arrows between objects

- e.g. for sets *X* and *Y*, all functions from $X \rightarrow Y$
- e.g. for vector spaces W and V, all linear transformations from $W \rightarrow V$

Intro O Categories o●ooooooo Neural Networks

Categorical Properties

Definition

A category C has

- Objects $Ob({\mathcal C})$
- For $A, B \in Ob(\mathbb{C})$, all morphisms $A \to B$; denoted hom(A, B)

Categories o●ooooooo Neural Networks

Categorical Properties

Definition

A category C has

- Objects $Ob({\mathcal C})$
- For $A, B \in Ob(\mathcal{C})$, all morphisms $A \to B$; denoted hom(A, B)

Composition is allowed: if there is a relation $f : A \rightarrow B$ and $g : B \rightarrow C$, then

Then $g \circ f \in \text{hom}(A, C)$

Categories ○○●○○○○○○

Neural Networks

Categorical Properties

Future worl

Usage I

Categories form a system out of related objects and their morphisms

Categories ○○○●○○○○○

Neural Networks

Categorical Properties

Future work

Usage II

Categories can be mapped to other categories using functors

Neural Networks

Categorical Properties

Future work

Goal restated

Use category theory to study neural networks

Categories

Neural Networks

Categorical Properties

Future work

Example 1

Let ${\mathfrak C}$ have integers as objects - $\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$

For any two integers *x* and *y*, define

$$\hom(x,y) = \begin{cases} \phi_{xy} & x \le y \\ \varnothing & \text{else} \end{cases}$$

Categories

Neural Networks

Categorical Properties

Future work

Example 2

Let ${\ensuremath{ \mathbb C}}$ have one object \bullet

The morphisms from • to itself are

 $hom(\bullet, \bullet) = \mathbb{Z}$

Composition is given by addition

Categories 0000000●0 Neural Networks

Categorical Properties

Future work

Example 3

Let \mathcal{C} have natural numbers as objects - $\{0, 1, 2, 3, \ldots\}$

The morphisms from m to n are

 $hom(m,n) = all \ m \times n$ matrices

Arrow composition is given by matrix multiplication

Categories

Neural Networks

Categorical Properties

Future O

Example 4

Consider the power set of $\{x, y, z\}$: $\{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}$

$$\hom(x,y) = \begin{cases} \phi_{xy} & x \subseteq y \\ \varnothing & \text{else} \end{cases}$$

Categories

Neural Networks

Categorical Properties

Future work

Example 4

Consider the power set of $\{x, y, z\}$: $\{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}$

$$\hom(x,y) = \begin{cases} \phi_{xy} & x \subseteq y \\ \varnothing & \text{else} \end{cases}$$

Categories

Neural Networks

Categorical Properties

Future work

Example 4

Consider the power set of $\{x, y, z\}$: $\{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}$

$$\hom(x,y) = \begin{cases} \phi_{xy} & x \subseteq y \\ \varnothing & \text{else} \end{cases}$$

Categories

Neural Networks

Categorical Properties

Future work

Example 4

Consider the power set of $\{x, y, z\}$: $\{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}$

$$\hom(x,y) = \begin{cases} \phi_{xy} & x \subseteq y \\ \varnothing & \text{else} \end{cases}$$

Neural Networks ●00000 Categorical Properties

First cut

We can define a category of neural networks NNet

- Objects: natural numbers
- Morphisms: hom(m,n) is all neural networks with *m* inputs and *n* outputs
- Composition is concatenation where it makes sense

NNet has enough structure to define back propagation categorically!

C o Neural Networks 0●0000 Categorical Properties

Future work

Our approach

A neural network of length l is a sequence of functions

$$\left(\mathbb{R}^{n_0} \xrightarrow{N_0} \mathbb{R}^{n_1} \xrightarrow{N_1} \cdots \xrightarrow{N_{l-1}} \mathbb{R}^{n_l}\right)$$

The functions N_i will be referred to as *layer functions of* N.

$$N_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$$
 by $x \mapsto \sigma(Ax+b)$

Notation: we use σ for activation functions

Neural Networks

Categorical Properties

Future work

Example

Note: in **NNet** this neural network is an arrow $2 \rightarrow 2$

Intro

Neural Networks 000●00 Categorical Properties

Morphisms

 $N = (N_0, N_1, \dots, N_{l-1})$ and $M = (M_0, M_1, \dots, M_{l-1})$ are neural networks of length l

A morphism $f: N \to M$ is a sequence of functions (f_0, f_1, \ldots, f_l) such that

 $f_k \circ N_{k-1} \circ \cdots \circ N_1 \circ N_0 = M_{k-1} \circ M_{k-2} \circ \cdots \circ M_0 \circ f_0$ for all $1 \le k \le l$

Neural Networks 000●00 Categorical Properties

Morphisms

 $N = (N_0, N_1, \dots, N_{l-1})$ and $M = (M_0, M_1, \dots, M_{l-1})$ are neural networks of length l

A morphism $f: N \to M$ is a sequence of functions (f_0, f_1, \dots, f_l) such that

 $f_k \circ N_{k-1} \circ \cdots \circ N_1 \circ N_0 = M_{k-1} \circ M_{k-2} \circ \cdots \circ M_0 \circ f_0$ for all $1 \le k \le l$

Categories 000000000 Neural Networks 0000●0 Categorical Properties

Future work

A new hope

We can form a new category whose

- objects are neural networks of length *l*
- morphisms are appropriate sequences (f_0, \ldots, f_l)

What's left? Composition

This is done layer by layer:

 $(f_0, f_1, \ldots, f_l) \circ (g_0, g_1, \ldots, g_l) = (f_0 \circ g_0, f_1 \circ g_1, \ldots, f_l \circ g_l).$

Neural Networks

Categorical Properties

Future work

Categories of neural nets

Recall layer functions:

 $N_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ by $x \mapsto \sigma(Ax + b)$

We can make several categories by picking the activation function σ :

AffineNet N_i required to be an affine function followed by any activation functionReluAffineNet N_i required to be an affine function followed by ReLU activation function

Category note: **ReluAffineNet**_l is a subcategory of **AffineNet**_l

Neural Networks

Categorical Properties

Future work

Isomorphisms

Neural Networks

Categorical Properties

Future work

Isomorphisms II

Intro O

Categories 000000000 Neural Networks

Categorical Properties

Future work

Terminal objects

The *terminal network T* is given by

$$\mathbb{R}^0 \xrightarrow{0} \mathbb{R}^0 \xrightarrow{0} \cdots \xrightarrow{0} \mathbb{R}^0$$

Let N be an object of AffineNet_l or ReluAffineNet_l

There is a unique morphism $N \rightarrow T$

Categories

Neural Networks

Categorical Properties

Future work

Initial objects

The *initial network I* is given by

$$\varnothing \to \varnothing \to \dots \to \varnothing$$

Let N be an object of AffineNet_l or ReluAffineNet_l

There is a unique morphism $I \rightarrow N$

Neural Networks

Categorical Properties

Products

Let N and M be objects of AffineNet_l or ReluAffineNet_l

Their *product* $N \times M$ is given by

$$\mathbb{R}^{n_0} \times \mathbb{R}^{m_0} \xrightarrow{N_0 \times M_0} \mathbb{R}^{n_1} \times \mathbb{R}^{m_1} \xrightarrow{N_1 \times M_1} \cdots \xrightarrow{N_{l-1} \times M_{l-1}} \mathbb{R}^{n_l} \times \mathbb{R}^{m_l}$$

$N \times M$ is in AffineNet_l or ReluAffineNet_l

Neural Networks

Categorical Properties

- 1. Extend these definitions to allow networks of different lengths
- 2. Find interesting morphisms between realistic networks
- 3. Explore categorical constructions, such as equalizers
- 4. Use subobject language to describe subnetworks
- 5. Employ machinery of other categories using functors