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Feed-Forward Neural Networks (FFNN)

• Most well-known Artificial Neural 
Network (ANN)
– Several layers of fully-connected 

(FC) nonlinear elements called 
neurons

– Output of each neuron is a nonlinear 
function of the weighted sum of its 
inputs

• Outputs of neurons in one layer 
become the inputs to the next layer

• Many possible activation functions 
for the nonlinearity of the neuron



Training Neural Networks: 

Back Propagation Algorithm

• FFNNs can be trained by using the Back Propagation 
(BP) Algorithm
– Stochastic Gradient Descent (SGD) to minimize the 

loss (error) between the network’s output and the 
true output

• Different loss functions and variations of SGD are 
possible



Feed-Forward Vs. Recurrent Neural 

Networks (RNN)

• In FFNNs information only flows from input to the 
output direction
– No cycles or loops, No memory

– Not ideal for handling sequential or time-series data

Feed-forward neural network

• Recurrent Neural Networks (RNN)
– Outputs of layers/neurons are fedback as 

inputs

– Each neuron has an internal hidden state (h) 
that is used to feedback information

Ideal for handling sequential 
data (with correlations): 

e.g. NLP (text mining, sentiment 
analysis), machine translation,  
time-series prediction



Learning Long-term Dependencies?

• In theory, RNNs can be trained just the same way as FFNNs by modifying the BP algorithm 
to what is called Back Propagation Through Time (BPTT)
– In practice, gradients can quickly vanish or explode rendering it ineffective

• Standard RNNs are not very effective in learning long-term dependencies



Long Short-term Memory (LSTM)

• In LSTM, there are four interacting 
layers
– Forget gate, input gate, cell gate, 

output gate

• In addition to the hidden state, there is a 
another state that carries information 
from one time instant to another
– Cell state 

• Long short-term Memory, LSTM, is a more elaborate type of RNN that has shown to be 
capable of learning long-term dependencies

• Standard RNN only has a single 
layer that performs hidden state 
and input interactions



What Does LSTM Do?



ConvLSTM: A Neural Model for Learning 

Spatio-temporal Correlations

• Long Short-term Memory (LSTM) is good at learning long-
term correlations in temporal data 
– They cannot learn spatial correlations!

• Convolutional LSTM (ConvLSTM):
– Combines the convolution of CNNs with sequential 

processing of LSTMs

– Replace matrix products with weights by convolution 
with a filter kernel 

• Ideal for learning spatiotemporal correlations in 
image sequences
– Keras: convlstm2d



What Does ConvLSTM Do?



Remote Sensing with LEO Satellites

• A swarm of LEO satellites

• Pearl-of-string or cluster 
formations

• Each satellite generates an 
image of the earth’s 
surface inside its footprint 
on the earth
– Periodic or even-driven



DL based Nonlinear Predictive 

Coding (NLPC) for Remote Sensing

• Original image size: dxd pixels (e.g. 10x10)

• Original bits per pixel (bpp): Q (e.g. Q=8)

• Pixel resolution: 1/2Q (e.g. 1/256)

• RCNN training period: Nt

• Estimated std of pixel prediction errors of j-th
satellite

• Assumption - Prediction error range: [-σ, σ]

• Quantization levels needed to keep the same original 
resolution: 

• Minimum number of bits per pixel needed to encode 
the prediction error at the same original resolution



RCNN NLPC Coding of Earth Images

Swarm of 5 LEO cubesats

Model 0

• Number of Layers: 7

• Layers 1 – 6: Conv2Dlstm, Filters = 49, Kernel 
= (3x3), Activation = tanh

• Number of trainable parameters: 955648 

• Runtime: 31414 seconds

Model 6

• Number of Layers: 4

• Layers 1 – 3: Conv2Dlstm, Activation = relu

• Layer 1 -3 Filters: 128, 64, 32

• Layers 1- 3 Kernels: (5x5), (3x3), (1x1) 

• Number of trainable parameters: 2108065 

• Runtime: 21034 seconds

Model 16

• Number of Layers: 4

• Layers 1 – 3: Conv2Dlstm, Activation = relu

• Layer 1 -3 Filters: 49, 39, 29

• Layers 1- 3 Kernels: (5x5), (3x3), (1x1) 

• Number of trainable parameters: 377926

• Runtime: 18420 seconds

• Final layer of all models: Conv3D, Filters = 1, Kernel = (3,3,3), 
Activation = sigmoid

• Training over Nt = 3000 time instants (observation points)

• Original images: 10x10 pixels (d=10) with Q=8 bpp



Performance of RCNN NLPC Coding 

of Earth Images
With Retraining every 1000 time instantsWithout any retraining



Performance of RCNN NLPC Coding 

of Earth Images

True Bits used during runtimeEstimated Minimum Bits (q)

1

0

1

2

3

4

5

6

Min Bits (Model 0) Run Results

Sat 0

Sat 1

Sat 2

Sat 3

Sat 4

1

0

1

2

3

4

5

6

Min Bits (Model 16) Run Results

Sat 0

Sat 1

Sat 2

Sat 3

Sat 4

Sat #1 5.67

Sat #2 5.44

Sat #3 5.06

Sat #4 4.36

Sat #5 4.43

Average 4.99

Sat #1 5.37

Sat #2 5.15

Sat #3 4.85

Sat #4 4.25

Sat #5 4.39

Average 4.80



DL based Nonlinear Predictive 

Coding (NLPC) for Remote Sensing

• Encoder

• Decoder



DL based Distributed NLPC 

Compression in Cubesat Swarms
Swarm of 5 LEO cubesats, 2 GEO relays and 2 Earth stations

• Fully distributed implementation for 
real-time encoding and decoding

• Regular updating of DNN’s in space 
while maintaining synchronization 
with ground decoders

• 10x10 pixel grey images of earth 
footprint

• Bursty or periodic data

• Cluster or string-of-pearls 
formations



DL aided Cognitive Cooperative 

Scheduling for Cubesat Networks

• Payload Prediction with Trained RCNN

• Predict and broadcast relay capacities

• Cooperative relay requests

• Multi-objective relay prioritization protocol 
for relay scheduling

• L2L buffer exchanges

• L2Geo/L2Earth data transmissions



Cooperative Relay Requests



Cooperative 
Relay 
Scheduling



Cognitive Cooperative Scheduling with Distributed NLPC Compression

Deep learning based 
nonlinear predictive 
coding distributed 
data compression

Distributed 
compression of data 
at sensor and cluster 

levels

Cluster level 
cooperative relay 

scheduling using deep 
learning predictions

Multi-objective 
optimization for data 

prioritization

A DL based Protocol for Small spacecraft Swarms:



A Measure 
of Fairness

Jayne’s Fairness Metric

Modified Jayne’s Fairness Metric



DL aided Cognitive 
Cooperative 
Scheduling in Cubesat
Swarms

• Swarm of 5 LEO cubesats, 2 GEO relays and 2 
Earth stations



DL aided Cognitive Cooperative Scheduling in 
Cubesat Swarms

Uniform Data and Link Capacities

• L2E Capacities: [1200, 1200, 1200, 1200, 1200]

• L2G Capacities: [1200, 1200, 1200, 1200, 1200]



DL aided Cognitive Cooperative Scheduling in 
Cubesat Swarms

Poisson Data with Unequal Link Capacities

• Poisson parameters [2, 1, 1, 3, 3]
• L2E Capacities: [2400, 2400, 2400, 2400, 2400]
• L2G Capacities: [2400, 2400, 0, 2400, 0]



DL aided Cognitive Cooperative Scheduling with Distributed 
NLPC Compression in Cubesat Swarms

Uniform Data and Link Capacities

• L2E Capacities: [1200, 1200, 1200, 1200, 1200]

• L2G Capacities: [1200, 1200, 1200, 1200, 1200]

Swarm of 

5 LEOs, 2 GEO relays &

2 Earth stations



DL aided Cognitive Cooperative Scheduling with Distributed 
NLPC Compression in Cubesat Swarms

Poisson Data with Unequal Link Capacities

• Poisson parameters [2, 1, 1, 3, 3]
• L2E Capacities: [2400, 2400, 2400, 2400, 2400]
• L2G Capacities: [2400, 2400, 0, 2400, 0]

Swarm of 

5 LEOs, 2 GEO relays &

2 Earth stations



Summary Performance

Poisson Data with Unequal Link Capacities

• Poisson parameters [2, 1, 1, 3, 3]
• L2E Capacities: [2400, 2400, 2400, 2400, 2400]
• L2G Capacities: [2400, 2400, 0, 2400, 0]

Swarm of 

5 LEOs, 2 GEO relays &

2 Earth stations



Thank you.


