

Deep Learning Based Cooperative Scheduling with Distributed Non-linear Predictive Coding for Small Spacecraft Swarms

Sudharman K. Jayaweera Communications and Information Sciences Lab (CISL) Department of Electrical and Computer Engineering University of New Mexico USA.

Brian McCollum and Mustafa Alkwaz

Bluecom Systems & Consulting Albuquerque, NM, USA.

Feed-Forward Neural Networks (FFNN)

- Most well-known Artificial Neural Network (ANN)
 - Several layers of fully-connected (FC) nonlinear elements called neurons
 - Dutput of each neuron is a nonlinear function of the weighted sum of its inputs
- Outputs of neurons in one layer become the inputs to the next layer

 Many possible activation functions for the nonlinearity of the neuron

+1

Buck Propagation Algorithm

FFNNs can be trained by using the Back Propagation J(W)

Input x

- Stochastic Gradient Descent (SGD) to minimize the loss (error) between the network's output and the true output
- Different loss functions and variations of SGD are possible

Feed-Forward Vs. Recurrent Neural Networks (RNN)

- In FFNNs information only flows from input to the output direction
 - No cycles or loops, No memory
 - Not ideal for handling sequential or time-series data

- Recurrent Neural Networks (RNN)
 - Outputs of layers/neurons are fedback as inputs
 - Each neuron has an internal hidden state (h) that is used to feedback information

Ideal for handling sequential data (with correlations): e.g. NLP (text mining, sentiment analysis), machine translation, time-series prediction

N/M

Learning Long-term Dependencies?

- In theory, RNNs can be trained just the same way as FFNNs by modifying the BP algorithm to what is called **Back Propagation Through Time** (BPTT)
 - In practice, gradients can quickly vanish or explode rendering it ineffective

• Standard RNNs are not very effective in learning long-term dependencies

• Long short-term Memory, LSTM, is a more elaborate type of RNN that has shown to be capable of learning long-term dependencies

- In LSTM, there are four interacting layers
 - Forget gate, input gate, cell gate, output gate
- In addition to the hidden state, there is a another state that carries information from one time instant to another
 - Cell state

• Standard RNN only has a single layer that performs hidden state and input interactions

$$\mathbf{h}_t = \tanh \left(W_h imes \left[\mathbf{h}_{t-1}, \mathbf{x}_t
ight]
ight)$$

What Does LSTM Do?

σ

 h_{t-1}

 x_t

 $\mathbf{o}_t = \sigma \left(W_o imes \left[\mathbf{h}_{t-1}, \mathbf{x}_t
ight]
ight)$

 $\mathbf{h}_t = \mathbf{o}_t \odot \tanh \mathbf{C}_t$

ConvLSTM: A Neural Model for Learning Spatio-temporal Correlations

- Long Short-term Memory (LSTM) is good at learning longterm correlations in temporal data
 - They cannot learn spatial correlations!

- Convolutional LSTM (ConvLSTM):
 - Combines the convolution of CNNs with sequential processing of LSTMs
 - Replace matrix products with weights by convolution with a filter kernel
- Ideal for learning spatiotemporal correlations in image sequences
 - Keras: convlstm2d

What Does ConvLSTM Do?

Remote Sensing with LEO Satellites

- A swarm of LEO satellites
- Pearl-of-string or cluster formations

- Each satellite generates an image of the earth's surface inside its footprint on the earth
 - Periodic or even-driven

Bluecom DL based Nonlinear Predictive Coding (NLPC) for Remote Sensing $|\hat{x}_n|^{n-1}$ RCNN $e_{pN+n}^{(j)} = x_{pN+n}^{(j)} - \hat{x}_{pN+n|pN+n-1}^{(j)}$ output bpp = $\begin{cases} q & \text{if } |e_n| \le \sigma \\ Q+q & \text{otherwise} \end{cases}$ D

- Original image size: dxd pixels (e.g. 10x10)
- Original **bits per pixel (bpp)**: Q (e.g. Q=8)
- Pixel resolution: 1/2⁰ (e.g. 1/256)
- RCNN training period: N_t
- Estimated std of pixel prediction errors of j-th satellite

$$\sigma^{(j)} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} \frac{\left| \mathbf{X}_n^{(j)} - \hat{\mathbf{X}}_n^{(j)} \right|^2}{d^2}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} \frac{\left| e_n^{(j)} \right|^2}{d^2}}$$

• Assumption - Prediction error range:
$$[-\sigma, \sigma]$$

• Quantization levels needed to keep the same original resolution:

$$L \ = \ \frac{2\sigma}{1/2^Q} \ = \ 2^{Q+1}\sigma$$

 Minimum number of bits per pixel needed to encode the prediction error at the same original resolution

$$q = 1 + \lceil \log_2(L) \rceil$$
$$= 1 + \lceil \log_2(2^{Q+1}\sigma) \rceil = 1 + \lceil Q+1 + \log_2(2^{Q+1}\sigma) \rceil$$

Swarm of 5 LEO cubesats

- Final layer of all models: Conv3D, Filters = 1, Kernel = (3,3,3), Activation = sigmoid
- Training over $N_t = 3000$ time instants (observation points)
- Original images: 10x10 pixels (d=10) with Q=8 bpp

Model D

- Number of Layers: 7
- Layers 1 6: Conv2Dlstm, Filters = 49, Kernel = (3x3), Activation = tanh
- Number of trainable parameters: 955648
- Runtime: 31414 seconds

Model 6

- Number of Layers: 4
- Layers 1 3: Conv2DIstm, Activation = relu
- Layer 1 -3 Filters: 128, 64, 32
- Layers 1- 3 Kernels: (5x5), (3x3), (1x1)
- Number of trainable parameters: 2108065
- Runtime: 21034 seconds

Model 16

- Number of Layers: 4
- Layers 1 3: Conv2DIstm, Activation = relu
- Layer 1 3 Filters: 49, 39, 29
- Layers 1- 3 Kernels: (5x5), (3x3), (1x1)
- Number of trainable parameters: 377926
- Runtime: 18420 seconds

Performance of RCNN NLPC Coding [of Earth Images

Ain Num Bits

Performance of RCNN NLPC Coding of Earth Images

Estimated Minimum Bits (q)

Min Bits (Model 16)

Sat #1	5.67
Sat #2	5.44
Sat #3	5.06
Sat #4	4.36
Sat #5	4.43
Average	4.99

Min Bits (Model 0) Run Results

True Bits used during runtime

Sat #1	5.37
Sat #2	5.15
Sat #3	4.85
Sat #4	4.25
Sat #5	4.39
Average	4.80

Min Bits (Model 16) Run Results

DL based Distributed NLPC Compression in Cubesat Swarms Swarm of 5 LEO cubesats, 2 GEO relays and 2 Earth stations

- Fully distributed implementation for real-time encoding and decoding
- Regular updating of DNN's in space while maintaining synchronization with ground decoders
- 10x10 pixel grey images of earth footprint
- Bursty or periodic data
- Cluster or string-of-pearls formations

<figure>

Percentage of

Delivered Images

DL aided Cognitive Cooperative Scheduling for Cubesat Networks

- Payload Prediction with Trained RCNN
- Predict and broadcast relay capacities
- Cooperative relay requests
- Multi-objective relay prioritization protocol for relay scheduling
- L2L buffer exchanges
- L2Geo/L2Earth data transmissions

Each SAT node predicts & determines whether to be a COOP-Rx or a COOP-TX node

COOP-T

Exchange data and Relay to the ground

COOP-TX nodes computes data acceptance schedules and broadcast

Cooperative Relay Requests

Cooperative Relay Scheduling

COOP-TX nodes computes data

Step 1: Order the allocation fractions F_j in non-increasing order $F_{j_1} \geq F_{j_2} \geq \cdots, \geq F_{j_M}$ where $j_k \in S_T^{(i)}$, for $k = 1, \cdots, |S_T^{(i)}|$, and set $\hat{K}_p^{(i)} = K_p^{(i)}$. Step 2: For $k = 1, 2, \cdots, |S_T^{(i)}|$: $K_{j_k,i} = \min \left\{ F_{j_k} \hat{K}_p^{(i)}, K_p^{(j_k)}, C_{j_k,i} \right\}$ $\hat{K}_p^{(i)} \leftarrow \hat{K}_p^{(i)} - K_{j_k,i}$ and, for $m = k + 1, \cdots, |S_T^{(i)}|$, $F_{j_m} \leftarrow \frac{F_{j_m}}{\sum_{m'=k+1}^M F_{j_{m'}}}$ for $m = k + 1, \cdots, |S_T^{(i)}|$ (7)

DL based Protocol for Small spacecraft Swarms:

Cognitive Cooperative Scheduling with Distributed NLPC Compression

A Measure of Fairness

Ň

number of images generated by sat $i = X_i$ number of delivered images from sat $i = Y_i$ fraction of sat i images delivered $= \frac{Y_i}{X_i} \triangleq Z_i$

Jayne's Fairness Metric

Jain's Fairness Index =

$$= \frac{\left(\bar{\mathbf{Y}}\right)^2}{\bar{\mathbf{Y}}^2} = \frac{\left(\bar{\mathbf{Y}}\right)^2}{\operatorname{Var}(Y) + \left(\bar{\mathbf{Y}}\right)^2}$$
$$= \frac{\left(\frac{1}{N}\sum_{i=1}^N y_i\right)^2}{\frac{1}{N}\sum_{i=1}^N y_i^2}$$

Modified Jayne's Fairness Metric

Modified Jain's Fairness Index =

$$= \frac{\left(\bar{\mathbf{Z}}\right)^2}{\bar{\mathbf{Z}}^2}$$
$$= \frac{\left(\frac{1}{N}\sum_{i=1}^N z_i\right)^2}{\frac{1}{N}\sum_{i=1}^N z_i^2} = \frac{\left(\frac{1}{N}\sum_{i=1}^N \frac{y_i}{x_i}\right)^2}{\frac{1}{N}\sum_{i=1}^N \left(\frac{y_i}{x_i}\right)^2}$$

DL aided Cognitive Cooperative Scheduling in Cubesat Swarms

• Swarm of 5 LEO cubesats, 2 GEO relays and 2 Earth stations

DL aided Cognitive Cooperative Scheduling in Cubesat Swarms

Uniform Data and Link Capacities

- L2E Capacities: [1200, 1200, 1200, 1200, 1200]
- L2G Capacities: [1200, 1200, 1200, 1200, 1200]

FAIRNESS

Cooperation Effect on Delivery Delay

Cooperation Effect on Image Delivery

DL aided Cognitive Cooperative Scheduling in Cubesat Swarms

Poisson Data with Unequal Link Capacities

- Poisson parameters [2, 1, 1, 3, 3]
- L2E Capacities: [2400, 2400, 2400, 2400, 2400]
- L2G Capacities: [2400, 2400, 0, 2400, 0]

FAIRNESS

Cooperation Effect on Image Delivery

3000 2500 (Imesteps) 1500 Delay (500 0 10 50 100 Scheduling Period Length

Cooperation Effect on Image Delivery Delay

Cooperaton Effect on Modified Jaine's Fairness

DL aided Cognitive Cooperative Scheduling with Distributed **NLPC Compression in Cubesat Swarms**

Uniform Data and Link Capacities Effect on Image Delivery Delay L2E Capacities: [1200, 1200, 1200, 1200, 1200] 600 L2G Capacities: [1200, 1200, 1200, 1200, 1200] 500 Delay (Timesteps) 300 500 BASELINE Swarm of DELAY FAIRNESS 100 COMP + DELAY 0 COMP + FAIRNESS 10 50 100 Scheduling Length

- •
- ٠

Effect on Image Delivery

50

Scheduling Length

100

1

0.9

0.8

Delivery Percentage 0.6 0.5 0.4 0.3

0.2

0.1

0

10

Effect on Modified Jaine's Fairness

DL aided Cognitive Cooperative Scheduling with Distributed NLPC Compression in Cubesat Swarms

Poisson Data with Unequal Link Capacities

- Poisson parameters [2, 1, 1, 3, 3]
- L2E Capacities: [2400, 2400, 2400, 2400, 2400]
- L2G Capacities: [2400, 2400, 0, 2400, 0]

DELAY

FAIRNESS

- COMP + DELAY
- COMP + FAIRNESS

Scheduling Length Effect on Modified Jaine's Fairness

Effect on Image Delivery

Effect on Image Delivery Delay

Summary Performance

Poisson Data with Unequal Link Capacities

- Poisson parameters [2, 1, 1, 3, 3]
- L2E Capacities: [2400, 2400, 2400, 2400, 2400]
- L2G Capacities: [2400, 2400, 0, 2400, 0]

Swarm of 5 LEOs, 2 GEO relays & 2 Earth stations

Thank you.

