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e Most well-known Artificial Neural

Network (ANN)

— Several layers of fully-connected
(FC) nonlinear elements called
Neurons

— [Dutput of each neuron is a nonlinea
function of the weighted sum of its
inputs

o [utputs of neurons in one layer
become the inputs to the next layer

To the
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2D Graphical Representation

3D Graphical Representation
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Linear
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The activation of the
neuron is passed on
directly as the output

Logistic  (or
sigmoid)
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A S-shaped curve, very
popular because it is
Monotonous and has a
simple derivative, Range
of logistic or sigmoid
function is from 0 to |

k-th layer

 Many possible activation functions
for the nonlinearity of the neuran
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A sigmoid curve similar to
the logistic function.
Often performs better than
the logistic function
because of its symmetry.
Ideal for multilayer
Perceptrons, particularly
the hidden layers. Output
value is between -1 and
+1
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Tralnlng Neural Networks: ISBI
Back Propagation Algorithm

A local
cost minimum

/

 FFNNs can be trained by using the Back Propagation
(BP) Algorithm Jw)

— Stochastic Gradient Descent (S60) to minimize the
loss (error) between the network's output and the
true output

e [ifferent loss functions and variations of SGD are s
possible
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Feed-Forward Vs. Recurrent Neural 1{]}[
Networks (RNN)

@
Input Layers Hidden Layers Cutput Layer
g PE
in:ut . . .predicted - o
output
| o
| .
nput Layer Hidden Layers
e |n FFNNs information only flows from input to the  Recurrent Neural Networks (RNN)
output direction — [utputs of layers/neurons are fedback as
— Nocycles or loops, No memory Inputs
— Not ideal for handling sequential or time-series data — tach neuron has an internal hidden state (h)
that is used to feedback information
y y(t-2) y(t-1) y(t) y(t+1) y(t+2)
A i s A A & |deal for handling sequential

e.q. NLP (text mining, sentiment
analysis), machine translation,
B time-series prediction

x x(t-2) x(t-1) x(t) x(t+1) X(t+2)
(asL

| cl data (with correlations):
h . hit-2) C, h(t-1) c hit) C h(t+1) c h(t+2) €




Learning Long-term Dependencies?
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* |ntheory, RNNs can be trained just the same way as FFNNs by madifying the BP algorithm
to what is called Back Propagation Through Time (EPTT)

— In practice, gradients can quickly vanish or explode rendering it ineffective

I
A

—>

d ® ® CP )
l\=l=l=A=l\
6 & & o o
® O )
TT I
A A

—>

5 b

o Standard RNNs are not very effective in learning long-term dependencies
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Y1
Long Short-term Memory (LSTM) <

Long short-term Memary, LSTM, is a more elaborate type of RNN that has shown to be
capable of learning long-term dependencies

? ® 6? o dtandard RNN only has a single
layer that performs hidden state
{ A J‘ o j‘{ A }‘ and input interactions
| | h; = tanh (Wh X [ht—lgxt])
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t t t
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e InLSTM, there are four interacting A %] $ % A
layers 255

— Forget gate, input gate, cell gate, | |
output gate © ® ©

e |n addition to the hidden state, there is a
another state that carries information
from one time instant to another

— [ell state
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N1
ConvLSTM: A Neural Model for Learning
Spatio-temporal Correlations
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 long Short-term Memary (LSTM) is good at learning long- < Lo & — e,

term correlations in temporal data ) y @

— They cannot learn spatial correlations! 5 [5% .
0
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 [Convolutional LSTM (ConvLSTM):
— [ombines the convolution of CNNs with sequential
processing of LSTMs
— Replace matrix products with weights by convolution
with a filter kernel
* |deal for learning spatiotemporal correlations in
Image Sequences
— Keras: convlstmZd
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BlUeC: M
Remote Sensing with LEO Satellites

e Aswarm of LED satellites

« Pearl-of-string or cluster
formations

e Each satellite generates an
image of the earth's
surface inside its footprint
on the earth

— Periodic or even-driven
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DL based Nonlinear Predictive "W

Coding (NLPC) for Remote Sensing

—> RCNN — o) — L0 s0)
....... pN+n pN-+n pN+4+n|pN+n—1
B g if|e,| <o
output bpp = { Q)+ g otherwise

D

[riginal image size: dxd pixels (e.g. [0xI0)

° A t _P d ti .
«  Driginal bits per pixel (bpp): 1 (e.g. 0=8) ssumption - Prediction error range: [-o, o]

 [luantization levels needed to keep the same original

*  Pixel resolution: 1/2% (e.q. 1/258) resolution:
«  RENN training period: N, A
o [Estimated std of pixel prediction errors of j-th . - .
satellite Minimum number of bits per pixel needed to encode
the prediction error at the same original resolution
RO T o v N [ o il ¢ = 1+ log(L)]
Ny n=1 d Ny n=1 d = 1+ [logy (2Q+loﬂ = 1+[Q+1+1ogy
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RCNN NLPC Coding of Earth Images “

swarm of a LEQ cubesats

o Final layer of all models: ConvdD, Filters =1, Kernel = (3.3.3),
Activation = sigmoid

« Training over N, = 3000 time instants (observation points)

e (riginal images: 10x10 pixels (d=10) with =8 bpp

Min Bits (Model 0) Min Bits (Model 6) Min Bits (Model 16)
Model O Model B Model 16
e Number of Layers: 7 *  Number of Layers: 4 e Number of Layers: 4
Lazers | - B: ConvZDIstm, Filters = 49, Kernel «  layers!- 3: ConvZDIstm, Activation = relu «  layers |- 3: ConvZDIstm, Activation = relu
= (8x3). Activation = tanh «  layer!-3 Filters: 128, B4, 32 «  Layer!-3Filters: 49, 39, 23
Number of trainable parameters: JoaB48 o layers |- 3 Kernels: (3xa). (3x3), (Ixl) o layers |- 3 Kernels: (0xa). (3x3), (Ixl)
Runtime: 31414 seconds »  Number of trainable parameters: 2108065 *  Number of trainable parameters: 377926

Runtime: 21034 seconds . Runtime: 18420 seconds
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Performance of RCNN NLPC Coding iW)

of Earth Images

Without any retraining With Retraining every 1000 time instants

Model 0 Model 0
Error After Training 0 Error After Training .
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Performance of RCNN NLPC Coding IWYI
of Earth Images

Estimated Minimum Bits (g) True Bits used during runtime
Min Bits (Model 0) Run Results
Min Bits (Model 0)
’ Sat #1 567 6
j - Sat #2 544 i I W Sat0
g, -;:: Sat #3 5.06 3 mSatl
2 sat 4 4.36 2 o
0 Average 4.99 0 mSat4
1
Min Bits (Model 16) Run Results
Min Bits (Model 16)
6 Sat #1 537 6
’ Sat #2 515 z mSat0
N i sat #3 4.85 ) moart
2’ o Sat #4 4.25 2 a2
: Average 4.80 0 1 msSatd
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DL based Nonlinear Predictive
Coding (NLPC) for Remote Sensing

e Encoder

—> | RCNN —_—

g ifles| <o

output bpp = { )+ ¢ otherwise

JNC) BN ¢) BN )
° DEEDdEI" D pN+n pN—+n pN+n|pN-+n—1
»Xn-1
(Reconstructed Image)

@)
o O
O O
o O o)

9]

QC

Co0C
felele

_om | (( (CIsL



BlUeeE:

Yy,
DL based Distributed NLPC WMI

Compression in Cubesat Swarms
Swarm of a LED cubesats, 2 GED relays and 2 Earth stations

Fully distributed implementation for
real-time encoding and decoding

*  Reqular updating of DNN's in space
while maintaining synchronization
with ground decoders

|OxI0 pixel grey images of earth

footprint
) Bursty ar DEFiDdiE data Percentage of Average image Delivery Delay
*  Lluster or string-of-pearls Delivered Images

formations 3500
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DL aided Cognitive Cooperative \J*
Scheduling for Cubesat Networks

* Payload Prediction with Trained RCNN : g " & Lo
e Predict and broadcast relay capacities vy @ T o '
* [ooperative relay requests o e G s oor . -
o Multi-objective relay prioritization protocol =~ i,

for relay scheduling ¢ .4 | P . A
e |21 buffer exchanges S S SEE 5.

e |2Geo/L2Earth data transmissions 9 Y o o
(«asL e

Exchange data and Relay to the ground acceptance schedules and broadcast




Cooperative Relay Requests

¢ i (KI()J')’DZ(?J'))

COOP-TX

COOP-TX
CO!P-RX

COOP-TX
COOP-TX nodes broadcast Requests



Cooperative
Relay
Scheduling

COOP-TX
RX (4)
o - =
Y, P ‘ (J")
COOP RX " 2 €S, Ky
B = Mfly+ ety
COOP-TX COOP-TX

COOP-TX nodes computes data

Step 1: Order the allocation fractions F}; in non-increasing
order £y, > Fj;, > ..., > F;, where j; € Sq(f), for k =

1, ,\S](f)\, and set KS) = Kg).
Step 2: For k=1,2,-- ,\83(3)\:

Kpi = miH{ijK;(ai):’K;gjk)ank,i}

and, form=%k+1, - ,\Sg(f)\,

F;  + MEf form==k+1,-,[S¥ @)
Zm’:k+1 ijf
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LUNAR
GATEWAY

Deep learning based
nonlinear predictive

W coding distributed
a q ‘ data compression
P-RX .
COOP-RX COOP-TX
; 4 ‘ Distributed
Each SmallSat predicts & determines whether COOP-TX compression of data
to be a COOP-RX or a COOP-TX node COOP-TX nodes broadcast Requests at sensor and cluster
levels
i Cluster level
v e a) ‘ cooperative relay
\ : CO0P-TX scheduling using deep
) ' - CoRx - learning predictions
DS Y cadr v
Lmar 4 GATEWAY ,
ROVERS - glifea i Multi-objective
q i optimization for data
Execution : CooE COOP-TX prioritization
SmallSats observe, preprocess and exchange data and COOP-TX nodes computes data
relay to the earth either directly or via Lunar Gateway acceptance schedules and broadcasts

X1 X2

Xp+1Xp+2 Xp+NSCH

Xt—D—1 Xt
” ﬂ m ' ....... ' ““““ ' —> RCNN —_—
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A Measure

of Fairness

number of images generated by sat ¢ = X;
number of delivered images from sat ¢ = Y;
fraction of sat 2z images delivered = % £ 7
I . .
Jayne's Fairness Metric
= 2 o 2
o _ Y LY)
Jain’s Fairness Index = = = —
Y Var(Y) + (Y)
2
N
(% 25:1 yz)
N Die1 YE

Modified Jayne's Fairness Metric

2
Modified Jain’s Fairness Index = ( )




DL aided Cognitive
I Cooperative « Swarm of 5 LEO cubesats, 2 GEO relays and 2

Scheduling in Cubesat Earth stations
Swarms
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DL aided Cognitive Cooperative Scheduling in

Cubesat Swarms

Uniform Data and Link Capacities

Cooperation Effect on Delivery Delay

* L2E Capacities: [1200, 1200, 1200, 1200, 1200]
* L2G Capacities: [1200, 1200, 1200, 1200, 1200]
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10 50 100
Scheduling Peirod Length
Cooperation Effect on Image Delivery Cooperation Effect on Modified Jaine's Fairness

1 1
0.9 x 0.9
0.8 208
5 0.7 207
g 06 £ o0s
05 05
504 g 04
203 3 03

0.2 £
T 02
01 Z g4

0

(==}

10 50 100
Scheduling Period Length




DL aided Cognitive Cooperative Scheduling in

Cubesat Swarms

Poisson Data with Unequal Link Capacities

Cooperation Effect on Image Delivery Delay

e Poisson parameters (2,1, 1, 3, 3]
* L2E Capacities: [2400, 2400, 2400, 2400, 2400] 3000
* L2G Capacities: [2400, 2400, 0, 2400, 0]

2500

W BASELINE

Delay (Timesteps)
= = [ ]
o % =}
(=) (=] [=]
(=] [=] [=]

W DELAY
FAIRNESS 500

Scheduling Period Length

Cooperation Effect on Image Delivery Cooperaton Effect on Modified Jaine's Fairness

1
09 . 09
08 % 08

07 % 07

g 06 £ 06

Zos % 05

5 04 5 04

203 E_’_: 03
02 5 02
0.1 2 01

0

10 50 100
Scheduling Period Length




DL aided Cognitive Cooperative Scheduling with Distributed

NLPC Compression in Cubesat Swarms

Uniform Data and Link Capacities

Effect on Image Delivery Delay

* L2E Capacities: [1200, 1200, 1200, 1200, 1200]

* L2G Capacities: [1200, 1200, 1200, 1200, 1200] o

W BASELINE % 0

Swarm of o DELAY £ 300

5 LEOs, 2 GEO relays & FAIRNESS 2 200
2 Earth stations = COMP + DELAY 100 L L L

B COMP + FAIRNESS 0

Scheduling Length

Effect on Image Delivery Effect on Modified Jaine's Fairness

Index

nes:

m

| 1
09 0.9
0.8 - 0.8

% 0.7 907

g 06 _E 0.6

a: 05 E; 0.5

g 0.4 5 04

& 03 £ 03

=}
0.2 2 02
01 0.1
o |
50 100

10 10 50 100 (
Scheduling Length Scheduling Length C’EL



DL aided Cognitive Cooperative Scheduling with Distributed

NLPC Compression in Cubesat Swarms

Poisson Data with Unequal Link Capacities

 Poisson parameters [2, 1, 1, 3, 3] Effect on Image Delivery Delay

* L2E Capacities: [2400, 2400, 2400, 2400, 2400] 3000
* L2G Capacities: [2400, 2400, 0, 2400, 0]

2500
Z 2000
S f W BASELINE &
£
warm o ® DELAY F; 1500
5 LEOs, 2 GEO relays & EAIRNESS £ 1000
B COMP + EAIRNESS o i -
10 50 100
Scheduling Length
Effect on Image Delivery Effect on Modified Jaine's Fairness
1 1
0.9 x 0.9
0.8 Eos8
gn 0.7 2 07
£ 06 £ 06
o &
g o0s @ 05
z =
S 04 T 0.4
% =]
203 203
0.2 T 02
0.1 0.1

10 50 100 10 50 100 ( C’SL
Scheduling Length Scheduling Length



Summary Performance

Poisson Data with Unequal Link Capacities

* Poisson parameters [2, 1, 1, 3, 3] Swarm of
* L2E Capacities: [2400, 2400, 2400, 2400, 2400] 5 LEOs, 2 GEO relays &
* L2G Capacities: [2400, 2400, 0, 2400, 0] 2 Earth stations

Percentage of Average Image Modified Jain's Fairness
Delivered Images Delivery Delay Index
1 3000 1
W BASELINE
0.8 2500 0.95
. ® DELAY
g Z 2000
= . = W 0.9
S 0-6 & 2 FAIRNESS
& E 1500 E
5 = £
204 s 0-85 W COMP +
‘S & 1000
3 DELAY
0.2 500 0.8 B COMP +

- . FAIRNESS
(( (CISL
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