National Aeronautics and Space Administration

Emulated Spacecraft Communication Testbed for

Evaluating Cognitive Networking Technology

NASA Glenn Research Center Joseph Downey, Adam Gannon, Aaron Smith, Mick Koch, Rachel Dudukovich, and Ethan Schweinsberg

AGENDA

- Introduction / Motivation
- Testbed Overview
- Scenario Definition
- Networking Dataflow / Metrics
- End-to-End Testing
- Conclusions

INTRODUCTION

- NASA's projected communication architecture requires autonomy, flexibility, resiliency, and interoperability.
- Cognitive radio / networking technology can address many of challenges of a complex, dynamic environment.
- Interaction between physical layer and networking layer is key, driving need for highfidelity emulation testbeds for evaluation + development

Autonomous Operation / Delay Tolerant Networking

Automatic Scheduling Configuration for Transient Science

Environmental Awareness

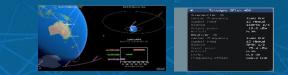
TESTBED OVERVIEW

User Spacecraft Emulation

- Software Defined Radios hosts waveform for each service
- Automation software loads waveforms per event schedule Flight computer generates representative data for mission

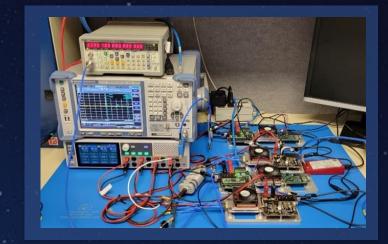
Service Provider Emulation

- Emulate Direct-to-Earth and Space Relay providers
- Provider-unique waveforms and modems
- Government and Commercial services


Multi-channel RF Emulator

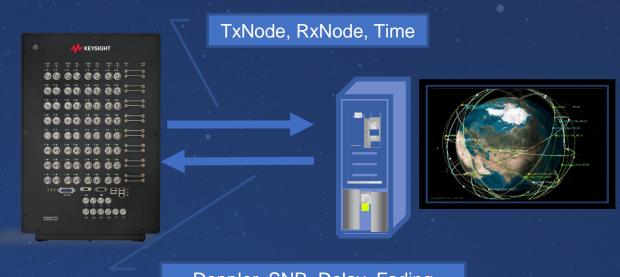
- Spacecraft orbital dynamics modeling, automatically calculated
- Channel impairments: AWGN, delay, Doppler, fading
- Interference Injection, weather impairments, link disruptions

Testbed Controller


- Automates operations of Testbed
- Visualization of link status, scheduled events, data transfer performance
- System monitor / data logging

TESTBED OVERVIEW USER SPACECRAFT EMULATION

- Communication subsystem and flight computer emulated in testbed
 SDR is envisioned to be a wideband RF
- terminal, tunable over wide RF range, interoperability with Gov/Commercial frequency allocations. CesiumAstro SDR engineering model represents this function with flight-like hardware
- Flight-heritage waveform applications from NASA's Software Catalog and commercial IP cores.
- Flight computer hosts
 Data Generation

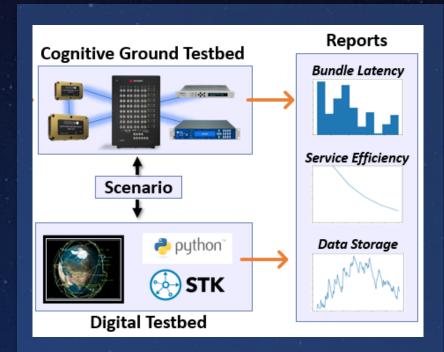

 - Storage Manager
 DTN Networking Software
 Service Request Automation

Waveform	Modulation	Max Rate	Function	
Spread Spectrum	SS-BPSK	193 kbps	Gov. Space Relay	
QPSK	QPSK	31 Mbps	DTE S-band	
DVB-S2	PSK / APSK	31 Mbaud	Comm Space Relay	
High-Rate BW Eff.	PSK / APSK	83 Mbaud	DTE Ka-band	

TESTBED OVERVIEW RF CHANNEL EMULATOR / ORBITAL DYNAMICS

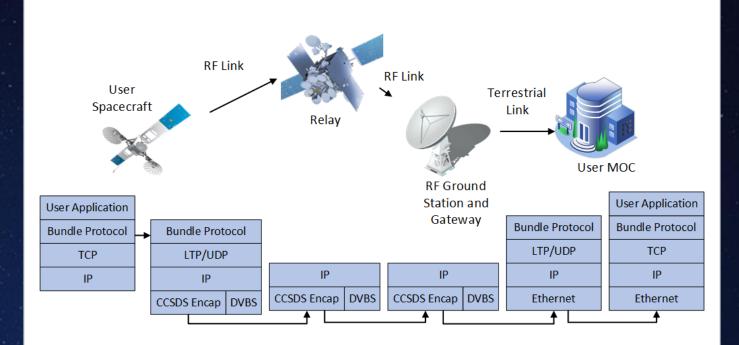
- Autonomous communications systems can request service ondemand, RF channel emulator operation needs to be automated
- operation needs to be automated
 AGI's System Tool Kit (STK) provides API-driven interface for responding to channel conditions between nodes at given time
 Testbed Controller loads and
- Testbed Controller loads and triggers channel emulation per the event schedule between desired nodes.
- RF interference can be injected with external Vector Signal Generator, or as additional input to RF channel emulator with modeled channel conditions.

Doppler, SNR, Delay, Fading


TESTBED OVERVIEW SERVICE PROVIDER EMULATION

- Each provider's set of ground stations and/or relay satellites modeled, including location, and key attributes (EIRP, G/T)
- Commercial modems are either representative, or exact copy of the provider's service
- For scheduling, each provider Service availability modeled as a probability of acceptance

	Service Providers						
	Gov Relay	CSP Relay #1	CSP Relay #2	DTE #1	DTE #2		
Provider Location	GEO (TDRSS)	GEO	MEO	Polar Network	Global Network		
Frequency	S/Ka	Ka	Ка	S/Ka	S/X		
Waveform	SNUG	DVB-S2*	DVB-S2**	CCSDS	CCSDS / DVB-S2		
Emulation Modem	RT Logic TSIM	Qflex-400	Comtech CDM-760	Amergint / Zodiac	Kratos qRadio		


SCENARIO DEFINITION

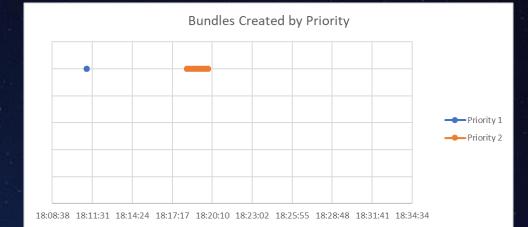
- Scenario definitions are used to initialize testbed components and assist with version controlling test operations for reproducibility.
 - Defined as set of CSV-formatted files.
- System runs in real-time using current TLE and current time
- Describes the spacecraft orbit, ground station location, RF performance (EIRP, G/T), and associated waveform
 - Enables addition / subtraction of service providers
- Also defines spacecraft data generation
 - Data-rate
 - Bursty, Continuous
 - Priority

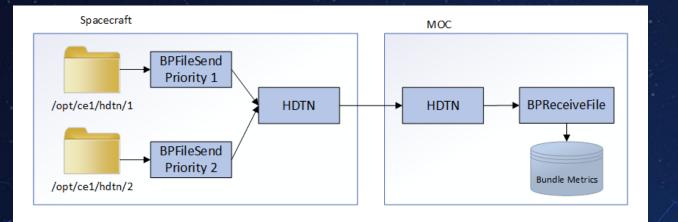
NETWORKING DATA FLOW

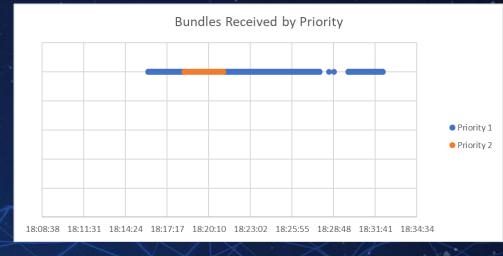
- The testbed uses the HDTN file transfer application to convert files to bundles
- The space to ground link uses LTP over UDP/IP that can be converted into either CCSDS or commercial protocols and waveforms
- The packets on the ground will reach a DTN gateway
- BP can run over terrestrial protocols from the gateway to the user MOC

System Metrics

- HDTN is used to collect and log system metrics at the spacecraft and MOC
 The HDTN web interface
- The HDTN web interface provides a graphical display

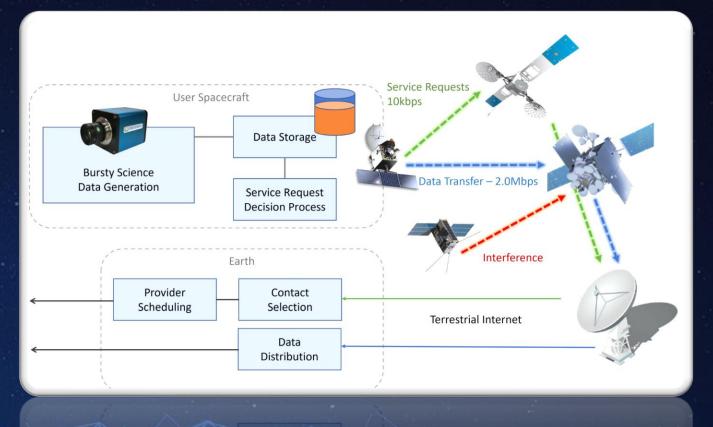


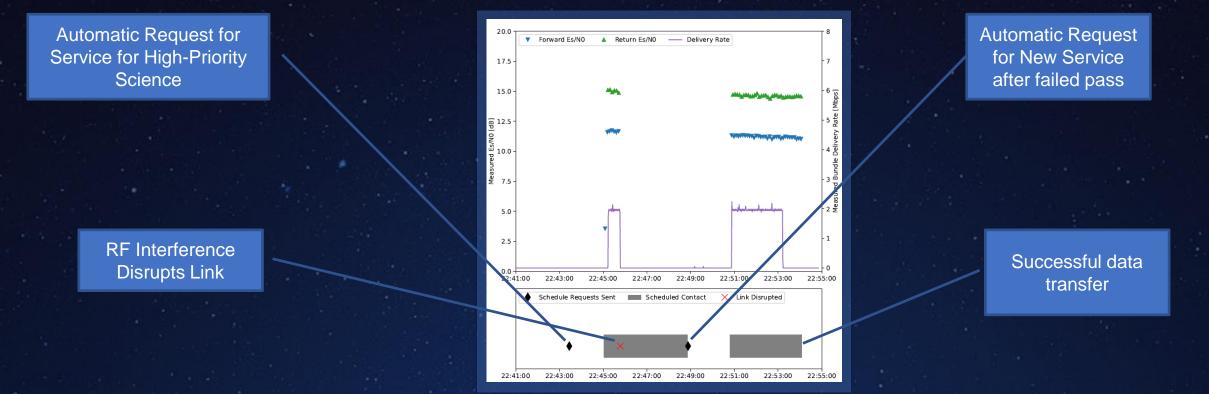

Sample Metrics File


timestamp(ms)	bundle_source_to_sink_latency_s	priority	destination_node_id	destination_service_id	source_node_id	source_service_id	expiration_ms	lifetime_seconds	creation_seconds_since_2000
0	293	1	2	1	1	1	7.38E+11	30	737575866
12	293	1	2	1	1	1	7.38E+11	30	737575866
24	293	1	2	1	1	1	7.38E+11	30	737575866
38	293	1	2	1	1	1	7.38E+11	30	737575866
50	293	1	2	1	1	1	7.38E+11	30	737575866
63	293	1	2	1	1	1	7.38E+11	30	737575866
76	293	1	2	1	1	1	7.38E+11	30	737575866
89	293	1	2	1	1	1	7.38E+11	30	737575866

Data Generation and Priority

- Custom scripts generate both bursty and continuous data of different files sizes and priority
- HDTN's storage module ensures high priority (2) data is transmitted before low priority (1) data





END-TO-END TESTING DEMONSTRATION SCENARIO

- As initial test, emulated LEO science mission modeled in medium inclined orbit (51 degree)
- Mission serviced by Gov./Comm. space relays
- Spacecraft generates high-priority science (weather, transient astronomical phenomena, etc)
- Intermittent disruption due to equipment misconfiguration or interference

END-TO-END TESTING DEMONSTRATION RESULTS

Initial demonstration demonstrates core functionality of the testbed, including end-toend DTN data flow, automated operations of the testbed, and supporting testing of autonomous/cognitive communications systems, without human interaction.

CONCLUSION

- High-fidelity, emulation environment critical for developing cognitive radio/networking application in realistic environment
- Testbed has been developed, supporting automated operations, and initial demonstrations completed.
- Follow-up work includes additional spacecraft nodes to support additional use cases.