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Problem

® Radio transmitter can hop between different
signal modulations which is called link adaptation

(LA).

® Deep learning is used at the receiver to recognize
which modulation is being used. At present, the
deep learning networks are pretrained.

® In new environments, signal characteristics can be
different than what the deep learning networks
were trained for. Thus, the existing deep learning
networks can sometimes fail in recognizing the
signal modulations received.
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Our Approach

® We periodically transmitted a dictionary of all signal modulations (this will be preceded by a
distinct signal pattern that can be easily recognized).

® On the receivers, we collected this dictionary and trained a deep network to learn the signal
characteristics. This will make a custom deep network for each radio receiver to allow better

performance.

® Accuracy of online training approach (94%) vs pretrained model (11%) under interference
signal.
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Overview
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* Over-the-air transmission.
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* Analog Devices ADALM-PLUTO transmitter/receiver
radios.
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* MATLAB was used to generate the modulated radio
signals.

Quadra

* GNU Radio was used to receive the 1/Q sequence.

* Center frequency: 902 MHz
* Samples per symbol: 8

'''''''''''
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Dataset

* Two seconds for each modulation class.
* |/Q sequence split into 1024 x 2 vectors.
* Training labels generated based on the transmission order.

* 2500 samples collected for each class.
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CNN Model

v
RB1 + Maxpooling

* CNN with customized residual blocks (RB). ¢
RB2 + Maxpooling
| E— ;
* Each block has two convolutional layers with a skip Conv1 .
connection. ¢ RBS5 + Maxpooling
Conv2 ;
i RB6 + Maxpooling
* Six residual bocks and six max pooling layers. o T
¢ Dense1
Residual Block v
* Three dense layers as the classifier. Derlsez
Output
* Network was trained for 20 epochs, and each took about CNN Model

8 seconds on the desktop GPU.
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Experiment Setup

* Tx1: the data signal transmitter.

* Tx2: the interference signal transmitter.

* Interference signal: random data sequence modulated with 128QAM.

* Increase the transmission gain of Tx2 from -28 dB to 0 dB.

* Netl: pre-trained network, only performed inference tasks.

* Net2: trained periodically with the received signals.



Results

* The classification accuracy of Netl decreased
from 97.46% to 11.22%.

* Net2 was trained periodically with the new
dictionary data from Tx1.

* The classification accuracy of Net2 only
dropped to 93.82%.

Receiver AMC Accuracy
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® Net1 (Pre-trained Network) = Net2 (Online Trained Network)
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Conclusion

® We developed an approach to improve the performance of the automatic modulation
classification system by having transmitter periodically send a know sequence of
modulation signals.

® The received data was used to retrain the AMC system.

® It allows the receiver to adjust to unknown distortions/interference.

®  Our approach provides better accuracy against a pre-trained model (94% vs 11%).



6 i
Future Work

Reason for training on edge (especially for radio signal classification).
* Privacy Protection and Anomaly Detection.
* Lower Latency and Higher Energy Efficiency.
» Establishment of reliable communication channel between edge and cloud.

Implementation on edge devices.

* Nvidia Jetson.
* FPGAs.

Deep learning for demodulation.
* Incorporation of demodulation and AMC system.
e End-to-end radio communication system.

Dataset release.
e More data collection.
* Currently no similar dataset available.
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Questions?
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