
Neuromorphic Hardware in Outer Space:
Software Defined Networking Executed on

an In-Orbit Loihi Spiking Processor
Tarek Taha

Md. Nayim Rahman
Chris Yakopcic

Brisk Computing, LLC
ttaha@ieee.org

Ricardo Lent

University of Houston
rlent@central.uh.edu

June 20, 2023

BRISK
COMPUTING

BRISK
COMPUTING

2/25

Overview

❑Cognitive network,

❑Software-defined Networking (SDN),

❑Network architecture and implementation,

❑Neuromorphic processor as cognitive agent (Intel’s Loihi)

❑Testbed experimental results and energy calculation

❑Implementation in outer space

BRISK
COMPUTING

3/25

Cognitive Network

❑In cognitive networking, networking issues are dealt with autonomously by observing and

collecting information from the environment and making appropriate decisions to achieve a

higher level of automation.

❑Cognitive network enabled devices adapt to changes in the network environment or user
demand without human intervention.

❑Cognitive networking improves the performance and efficiency of the network.

❑Applications:

➢Space exploration missions where the data transmissions occur over long unreliable channels

➢selecting new network paths, or managing the allocation and deallocation of computing
resources

BRISK
COMPUTING

4/25

Software-Defined Networking (SDN)

❑SDN uses software-based controller or application programming interfaces to control the
communication of network hardware infrastructure and data traffic.

❑Benefits:

➢More flexibility and control on the network operation.

➢Customizability of the network operation.

➢Robust security.

BRISK
COMPUTING

5/25

Cognitive Network Architecture

❑Designed network architecture:

➢Based on SDN

➢Dynamic environment

➢Supports dynamic routing management

❑Continually maps active flows to paths, which
change according to an assigned goal and the
state of the links

BRISK
COMPUTING

6/25

Software Architecture

 ROUTER

SDN Switching

RL
Agent

(internal)

Knowledge

Network Protocols

ARP

MPLS

ICMP

Monitor

RESTful API

RL Agent
(external)

southbound (OpenFlow 1.3)

northbound

(REST, YALM, JSON)

Agent

Class Agent

Class Monitor

Class KnowledgeClass Router

Class XYZ

BRISK
COMPUTING

7/25

Design Principles

❑Architecture defined around the Ryu controller and MPLS (Multiprotocol
label switching)

❑Routing is handled by a virtual network function (VNF)

❑Flows are defined as a 5-tuple (IP src, IP src_port, IP dst, IP dst_port,
protocol)

❑The MPLS network core consists of LER and LSR nodes
• Label-based, no IP
• Ingress LER maps a new flow to the ingress label
• Labels are distributed along the selected path
• Egress LER removes the label and forwards out the IP packets

❑Expected network graph and IP mappings are given:
• At boot time (YALM file)
• Dynamically updated through a REST interface
• Additional information is acquired dynamically
• Become part of the knowledge

BRISK
COMPUTING

8/25

Agent Base Class

❑The agent is decoupled from the network
operation

• Greatly simplifies the implementation

• Does not require to be aware of the
actual paths

• Just need to observe the routing costs
to make decisions

❑Agent is called passing the flow ID f and number
of paths |P(f)| (flow_init)

❑The agent decides the path index (flow_route)

❑MPLS router implements the selected path

BRISK
COMPUTING

9/25

Route Adaptation

❑Link costs are dynamically evaluated by the Monitor. The information becomes part of the
knowledge:

❑The path cost (negative reward) of the active flows is evaluated after a link cost change

❑The agent is informed of the affected flows and new path costs (flow_cost)

❑The router periodically attempts to modify the path of the active flows (flow_route)

BRISK
COMPUTING

10/25

Experimental Setup

❑A high-throughput satellite (HTS) system was emulated
in the University of Houston’s laboratory facilities.

❑One satellite router (node A) connected to four ground
stations and routers (nodes B, C, D, E).

❑The ground router E is connected to an external IP
network. The router implementation was deployed on
nodes A, B, C, D, and E with nodes A and E operating as
LER and the rest of nodes as LSR.

❑One way propagation delay was introduced both for the
downlink and the uplink using Linux's Traffic Control
(TC).

❑The delays for the links A-B, A-C, and A-D were
configured with 500ms, 200ms, and 100ms.

❑A YAML interface (a network configuration file) was
developed to pass the network topology to the
controller.

BRISK
COMPUTING

11/25

Reinforcement Learning on Intel Loihi

Define Reinforcement
Learning Model for
Network Routing

Convert the Model into
Spiking form using Nengo DL

Keras Models to
Nengo Networks

Implement on Loihi

Implement using
Nengo Loihi

❑ Reinforcement learning method learns
➢ by interacting with its environment and
➢ receiving rewards or punishment from its interactions.

❑ Q-learning is one of the basic working principle of Reinforcement learning.
❑ Q-learning tries to learn an optimal action-selection policy for any given finite

Markov Decision Process.

❑ It is used in game playing, control systems, operations research, multi-agent
systems, and so on.

BRISK
COMPUTING

12/25

Intel’s Neuromorphic Processor (Loihi)

❑Each Loihi Chip consists of 3 synchronous x86 cores and 128 neuromorphic cores.

❑Loihi is available in several Size:

➢ Kapoho Bay (1 or 2 chips)

➢Wolf Mountain (4 chips),

➢ Nahuku (32 chips),

➢ Pohoiki Beach (64 chips),

➢ Pohoiki Springs (764 chips)

❑Programming Language:

➢ NxSDK,

➢ Nengo (Deep learning),

➢ Slayer (Deep learning),

➢ LAVA

BRISK
COMPUTING

13/25

Loihi Kapoho Bay on Laptop at Brisk

❑ Kapoho Bay is a USB stick form factor that incorporates 1 or 2 Loihi chips.
❑ With 2 chip Kapoho Bay has 256 neuromorphic cores with 262,144 neurons and 260,000,000 synapses.

BRISK
COMPUTING

14/25

Agent’s Structure

Predict(flow_route)

Train (flow_cost)

Train entire dataset

Controller

Send Request

Receive Response
(Best route or

training is done

Agent

BRISK
COMPUTING

15/25

Dataset Processing

❑The input state of each training sample was constructed using the flow ID and the previous timestamps
received reward.

❑At first, a unique binary 4×4 matrix was created for each flow ID by converting it into a 16bit string using
the equation: (round(flow id/210)*10000).

❑After that the information of the best previous route was appended with that matrix to convert the input
state into an 8×8 matrix.

❑In the experiment, only three possible routes are considered.

❑Flow IDs are divided into two categories: downlink ('s23') and uplink ('s25') where each category can have
maximum 1024 flow IDs

Flow ID Binarized representation

1 0000000000001010

2 0000000000010100

BRISK
COMPUTING

16/25

Distributed Test Environment

s21

s22

s23

s24

s25

s26

s27

s30

polaris

gateway

UH side Brisk side

LOIHI

switch (control network)

BRISK
COMPUTING

17/25

Results: Shortest Path

❑Test: end-to-end ping

• Link state test rate: 1 pps

• Route update rate: 0.1 route/s (max)

BRISK
COMPUTING

18/25

Random Path

BRISK
COMPUTING

19/25

Neural Networks

Agent:
- NN agent consists of a local and a remote component
- Local component: interfaces with the Ryu controller

and the proposed SDN/VNF architecture
- Remote component: implements NNs with Keras and

Tensorflow
- RESTful communication between the 2 components

A

D
B

C

E

1

3

0

2

4

3

3

2

0

1

0 0

3

4

4

3

IP network

IP network

500ms 200ms 100ms

remote

remote

local

local

BRISK
COMPUTING

20/25

Energy Calculation

❑Application ran for 10 continuous operation (each operation took 12 seconds).

❑Power was measured for 30 seconds while running the routing application.

❑The energy consumption reaches around 7.5 Joule (0.25W×30s).

• VDD: Neuro cores, embedded Lakemont CPU,
mesh router, FPIO/PIO (programmed input-output)
protocol logic, etc. (everything else that consumes
power on the chip) are expressed as VDD and

• VDDM: VDDM shows the power consumption by
the SRAM memories

BRISK
COMPUTING

21/25

Space Exploration for Future Technology

❑On January 13th, 2022, the TES-13 CubeSat launched on a Virgin Orbit launch vehicle flight and
has recently successfully finished the successful Phase 1 Operations.

❑The TES-13 is based on a 3U nano-sat design.

❑NASA launched a Loihi Kapoho Bay USB unit hosted by an Up Board in a CubeSat (TES-13) to test
the machine learning algorithms on the Loihi in a space environment. Loihi based SDN application
was selected for this launch.

The TES-13 was launched on the Virgin Orbit Launcher 1
The TES-13 in preparation for integration into the dispenser

BRISK
COMPUTING

22/25

Modified SDN Implementation

❑Nengo-DL (deep learning library of Nengo) could not run on the Up Board due to the limited supported libraries (e.g.,

vector assembly instruction is not supported) by the Pentium processor on Up Board.

❑As a result, a new classification-based spiking feed-forward network (a two-layer perceptron network) was developed

for the Loihi using Intel's NxSDK that performed the core functionality of the routing.

❑ In the network, when the dot product of the input signals and the weights of a given neuron exceeds the predefined

threshold, then the neuron will send a spike to the following layer.

❑The networks weights were optimized in MATLAB and stored in the Loihi neuromorphic cores.

Connected weights

In
p

u
t

sp
ik

es

Output spikes

BRISK
COMPUTING

23/25

Modified SDN Implementation
❑This simplified version had no learning (it predicted the best route all the times).

❑Due to memory limitation, instead of writing all the neurons firing patterns, sum of all the spikes generated by the
input neurons were stored for each execution. The final output of this approach is an 87-character string of numbers
that would be transmitted to earth from the CubeSat to indicate successful execution.

❑ This output with spaces added in to clarify what the different fields are is shown below:

8 2 1011101111 100 2 1101111110 001 2 1101101110 010 8 2 1011101111 100 2 1101111110

001 2 1101101110 010 8

Output spike

❑ First '8' shows the program ran until the first Loihi call.
❑ 2 - number of input neurons that spiked
❑ 1011101111 - spiking pattern of 10 middle layer neurons
❑ 100 - spiking pattern of 3 output neurons
❑ 2 - start of a repeating pattern for the next execution
❑ The second '8' shows that the program completed the multicore Loihi calls (the first 3 runs).
❑ The third '8' shows all lines of code were executed without error.

BRISK
COMPUTING

24/25

Conclusion

❑Implemented SDN application on neuromorphic hardware in space.

Future work:

❑Execute developed learning enabled SDN application into space.

BRISK
COMPUTING

25/25

Backup

BRISK
COMPUTING

26/25

Loihi Connection

Connected to server (laptop)

BRISK
COMPUTING

27/25

Output from Loihi

BRISK
COMPUTING

28/25

Task 3: Integration and Validation

• Goal: To experimentally demonstrate
a LOIHI-based SDN/VNF routing
approach

• Implementation:
• Ryu controller

• Open VSwitch (OVS)

• MPLS routing provided through a VNF

• OVS nodes are virtualized with a 1:1
mapping of ports to physical interfaces

• Hardware OpenFlow switches to be
tested

A

D
B

C

E

1

3

0

2

4

3

3

2

0

1

0 0

3

4

4

3

IP network

IP network

500ms 200ms 100ms

BRISK
COMPUTING

29/25

Demo

	Slide 1
	Slide 2: Overview
	Slide 3: Cognitive Network
	Slide 4: Software-Defined Networking (SDN)
	Slide 5: Cognitive Network Architecture
	Slide 6: Software Architecture
	Slide 7: Design Principles
	Slide 8: Agent Base Class
	Slide 9: Route Adaptation
	Slide 10: Experimental Setup
	Slide 11: Reinforcement Learning on Intel Loihi
	Slide 12: Intel’s Neuromorphic Processor (Loihi)
	Slide 13: Loihi Kapoho Bay on Laptop at Brisk
	Slide 14: Agent’s Structure
	Slide 15: Dataset Processing
	Slide 16: Distributed Test Environment
	Slide 17: Results: Shortest Path
	Slide 18: Random Path
	Slide 19: Neural Networks
	Slide 20: Energy Calculation
	Slide 21: Space Exploration for Future Technology
	Slide 22: Modified SDN Implementation
	Slide 23: Modified SDN Implementation
	Slide 24: Conclusion
	Slide 25
	Slide 26: Loihi Connection
	Slide 27: Output from Loihi
	Slide 28: Task 3: Integration and Validation
	Slide 29: Demo

