Neuromorphic Hardware in Outer Space:
Software Defined Networking Executed on
an In-Orbit Loihi Spiking Processor

Tarek Taha Ricardo Lent
Md. Nayim Rahman
Chris Yakopcic University of Houston

rlent@central.uh.edu

Brisk Computing, LLC
ttaha@ieee.org

June 20, 2023

comutae HOUSTON

Overview BRISK

COMPUTING

JCognitive network,
dSoftware-defined Networking (SDN),
(ANetwork architecture and implementation,

(ANeuromorphic processor as cognitive agent (Intel’s Loihi)
dTestbed experimental results and energy calculation

JdIimplementation in outer space

2/25

Cognitive Network

BRISK

COMPUTING

in cognitive networking, networking issues are dealt with autonomously by observing and
collecting information from the environment and making appropriate decisions to achieve a

higher level of automation.

dCognitive network enabled devices adapt to changes in the network environment or user

demand without human intervention.

dCognitive networking improves the performance and efficiency of the network.

JApplications:

» Space exploration missions where the data transmissions occur over long unreliable channels
»selecting new network paths, or managing the allocation and deallocation of computing

resources

3/25

Software-Defined Networking (SDN) BRISK

(ISDN uses software-based controller or application programming interfaces to control the
communication of network hardware infrastructure and data traffic.

(A Benefits:
» More flexibility and control on the network operation.
» Customizability of the network operation.
»Robust security.

4/25

Cognitive Network Architecture BRISK

dDesigned network architecture:

> Based On SDN Remote Real-time Remote File transfer,
»Dynamic environment T
»Supports dynamic routing management Network Potcos
dContinually maps active flows to paths, which T
change according to an assigned goal and the I —— onCrme
state of the links e B E S
Space Link Protocols (e.g., CCSDS AOS)

5/25

Software Architecture

Class Router

Class XYZ

BRISK

COMPUTING

Class Agent
Agent
ROUTER i RL Agent
i (external)
! RL
: Agent < RESTIIAPI |«
i (internal)
" (REST, YALM, JSON)
| 7y
! northbound
\ 4
Knowledge Class Knowledge

\ / southbound (OpenFlow 1.

3)

SDN Switching

Class Monitor

6/25

Design Principles

BRISK

COMPUTING

W Architecture defined around the Ryu controller and MPLS (Multiprotocol
label switching)

Routing is handled by a virtual network function (VNF)

LFlows are defined as a 5-tuple (IP src, IP src_port, IP dst, IP dst_port,
protocol)

U The MPLS network core consists of LER and LSR nodes
* Label-based, no IP
* Ingress LER maps a new flow to the ingress label
* Labels are distributed along the selected path
* Egress LER removes the label and forwards out the IP packets

U Expected network graph and IP mappings are given:
e At boot time (YALM file)
* Dynamically updated through a REST interface
* Additional information is acquired dynamically
* Become part of the knowledge

#routin
routing

#routing: shortestpath

#routin

graph:
s22:

s23:
s24:
s25:

s23:

s22:
s2l:
s26:
s24:

s21:

s23:
s24:

s2
s24:
s22

s23:
s21:

s25:

s22:
s27:

s2

hostIp:
s27:
s26:

lerIp:
s23:
s25:

path:
s26:

s27

s27:
s26

g: glearning
: random

g: static

PW RRPWN NPW

5:

[\

= w NP2 W

1: 2

192.168.101.27
192.168.108.26

192.168.108.23
192.168.101.25

7/25

Agent Base Class

The agent is decoupled from the network
operation

* Greatly simplifies the implementation

* Does not require to be aware of the
actual paths

* Just need to observe the routing costs
to make decisions

L Agent is called passing the flow ID f and number
of paths |P(f)| (flow_init)

W The agent decides the path index (flow_route)
L MPLS router implements the selected path

BRISK

COMPUTING

class AgentBase():
#def __init__(self, *args, **kwargs):

Agent-specific functions

def

def

def

def

flow_init(self, flowID, nbr_action, costlL):
pass

flow_route(self, flowlD):

pass

flow_cost(self, flowID, actionlL, costl):
pass

flow_close(self, flowlD):

pass

Function exposed to the router
#def getPath(self, rtrName, srcName, dstName):

Utility function used by the router

def

getCost(self, fromNode, toNode):
return 1.0

8/25

Route Adaptation BRISK

ULink costs are dynamically evaluated by the Monitor. The information becomes part of the
knowledge:

c % curl localhost:808@/switchl3/data
{"s22": {"s24": {"delay": 0.001650300464313984, "cnt": 10}, "s25": {"delay": 0.00162362134605784

, 'cnt": 10}, "s23": {"delay": 0.3096590902378288, "cnt": 9}}, "s23": {"s22": {"delay": 0.3378
689080892093, "cnt": 10}, "s21": {"delay": 0.07774153303166254, "cnt": 10}, "s24": {"delay": 0.1
3889510999074178, "cnt": 9}}, "s21": {"s23": {"delay": 0.0015240369358162878, "cnt": 9}, "s24":
{"delay": 0.001529543478949547, "cnt": 9}}, "s24": {"s22": {"delay": 0.0015023722411098483, "cnt

The path cost (negative reward) of the active flows is evaluated after a link cost change
dThe agent is informed of the affected flows and new path costs (flow _cost)

The router periodically attempts to modify the path of the active flows (flow_route)

9/25

Experimental Setup BRISK

W A high-throughput satellite (HTS) system was emulated A

in the University of Houston’s laboratory facilities. @ o ﬂ

 One satellite router (node A) connected to four ground
stations and routers (nodes B, C, D, E).

U The ground router E is connected to an external IP
network. The router implementation was deployed on
nodes A, B, C, D, and E with nodes A and E operating as
LER and the rest of nodes as LSR.

200ms 100ms

 One way propagation delay was introduced both for the
downlink and the uplink using Linux's Traffic Control
(TC).

W The delays for the links A-B, A-C, and A-D were B a
configured with 500ms, 200ms, and 100ms. %

A YAML interface (a network configuration file) was
developed to pass the network topology to the %g @
E

controller.

10/25

Reinforcement Learning on Intel Loihi BRISK

1 Reinforcement learning method learns
» by interacting with its environment and
» receiving rewards or punishment from its interactions.
L Q-learning is one of the basic working principle of Reinforcement learning.
L Q-learning tries to learn an optimal action-selection policy for any given finite
Markov Decision Process.

O It is used in game playing, control systems, operations research, multi-agent
systems, and so on.

Nengo

Convert the Model into Implement using
Define Reinforcement Spiking form using Nengo DL Nengo Loihi
- Keras Models to & o
Learning Model for) > Implement on Loihi
) Nengo Networks
Network Routing

11/25

Intel’s Neuromorphic Processor (Loihi)

L Each Loihi Chip consists of 3 synchronous x86 cores and 128 neuromorphic cores.

U Loihi is available in several Size:
» Kapoho Bay (1 or 2 chips)
» Wolf Mountain (4 chips),
» Nahuku (32 chips),

» Pohoiki Beach (64 chips),
» Pohoiki Springs (764 chips)

U Programming Language:

» NxSDK,
»|Nengo (Deep Iearninlﬂ
» Slayer (Deep learning),
> LAVA

(i [|| 6] (@)
"

EllE II/J\I_’ ELLl r‘j\r‘ r‘/Lu N ENE
- — 8 52—
: EEIE (] EERIEEIE S|
e || [(] L) (L [[}i! NN ENGE
RGN EE N EE R EE) E
zfzuc I (] | [Z_L_-iio 5 @B @ | E 88
ElEENIEENEE & & (]
i () G E

BRISK

COMPUTING

{1 neuromorphic core

—

1 router

HH| I I

B tile

EHJ ::jr

X86 X86 core

12/25

Loihi Kapoho Bay on Laptop at Brisk BRISK

L Kapoho Bay is a USB stick form factor that incorporates 1 or 2 Loihi chips.
O With 2 chip Kapoho Bay has 256 neuromorphic cores with 262,144 neurons and 260,000,000 synapses.

e

T

13/25

Agent’s Structure

BRISK

COMPUTING

Train entire dataset

Train (flow_cost)

\ 4

Agent

A\ 4

Predict(flow_route)

\ 4

Send Request

Controller

Receive Response
(Best route or
training is done

A

14/25

Dataset Processing BRISK

dThe input state of each training sample was constructed using the flow ID and the previous timestamps
received reward.

LAt first, a unique binary 4 X4 matrix was created for each flow ID by converting it into a 16bit string using
the equation: (round(flow id/2°)*10000).

m Binarized representation

1 0000000000001010
2 0000000000010100

After that the information of the best previous route was appended with that matrix to convert the input
state into an 8 X 8 matrix.

in the experiment, only three possible routes are considered.

dFlow IDs are divided into two categories: downlink ('s23') and uplink ('s25') where each category can have
maximum 1024 flow IDs

15/25

Distributed Test Environment gﬁ,{gﬁg

switch (control network)

16/25

Results: Shortest Path

dTest: end-to-end ping
* Link state test rate: 1 pps
* Route update rate: 0.1 route/s (max)

class AgentShortestPath(AgentBase):

def __init__(self, =xargs, *xkwargs):
super(AgentShortestPath, self).__init__(*args, *xkwargs)

def flow_init(self, flowID, nbr_action, costL):
pass

def flow_route(self, flowID):
return @ # paths are sorted by their initial cost

def flow_cost(self, flowID, actionL, costl):
pass

def flow_close(self, flowID):
pass

1400

1200

1000
D _
£ 800
E 600 |

400 -

200 ¢

0

Shortest Path

BRISK

COMPUTING

b Oo CivEm M T r T TN 'ﬂ@"‘%;@'ﬁtﬁ;{mﬁiﬂﬂ' G Y s -
0 20 40 60 80 100
time (s)

17/25

Random Path

class AgentRandom(AgentBase):

def

def

def

def

def

__init__(self, xargs, xxkwargs):
super(AgentRandom, self).__init__(*args, *kkwargs)
self.nactionD = {}

flow_init(self, flowID, nbr_action, costL):
self.nactionD[flowID] = nbr_action

flow_route(self, flowID):
return random.sample(range(self.nactionD[flowID]), 1)[@]

flow_cost(self, flowID, actionL, costlL):
pass

flow_close(self, flowID):
pass

1400

1200

BRISK

COMPUTING

Random (uniform distribution)

.li1 iy

)
T TRy
i _'.‘if !

100

150
time (s)

200

18/25

Neural Networks BRISK

COMPUTING

Agent:

- NN agent consists of a local and a remote component

- Local component: interfaces with the Ryu controller 1400
and the proposed SDN/VNF architecture

- Remote component: implements NNs with Keras and
Tensorflow 1000 |

- RESTful communication between the 2 components

Neural Network

1200 |

ms)

8

00|

o o © o S .
500ms 200ms 100ms 200 mmﬂﬂf ne mwmﬂst mmwmﬂm) of “T'm b
- 0

remote @ c 0 20 40 60 80 100 120 140

ﬂ\. time (s)
<
6

19/25

Energy Calculation BRISK

W Application ran for 10 continuous operation (each operation took 12 seconds).
dPower was measured for 30 seconds while running the routing application.

dThe energy consumption reaches around 7.5 Joule (0.25W X 30s).

Loihi Power Consumption

* VDD: Neuro cores, embedded Lakemont CPU,
mesh router, FPIO/PIO (programmed input-output)
protocol logic, etc. (everything else that consumes

0.15 power on the chip) are expressed as VDD and

* VDDM: VDDM shows the power consumption by
the SRAM memories

Povrer (W)

20/25

Space Exploration for Future Technology gﬁ,ﬁﬁg

(dOn January 13t, 2022, the TES-13 CubeSat launched on a Virgin Orbit launch vehicle flight and
has recently successfully finished the successful Phase 1 Operations.

UThe TES-13 is based on a 3U nano-sat design.

(NASA launched a Loihi Kapoho Bay USB unit hosted by an Up Board in a CubeSat (TES-13) to test
the machine learning algorithms on the Loihi in a space environment. Loihi based SDN application
was selected for this launch.

The TES-13 was launched on the Virgin Orbit Launcher 1

The TES-13 in preparation for integration into the dispenser

21/25

Modified SDN Implementation BRISK

COMPUTING

L Nengo-DL (deep learning library of Nengo) could not run on the Up Board due to the limited supported libraries (e.g.,
vector assembly instruction is not supported) by the Pentium processor on Up Board.

U As a result, a new classification-based spiking feed-forward network (a two-layer perceptron network) was developed
for the Loihi using Intel's NxSDK that performed the core functionality of the routing.

O In the network, when the dot product of the input signals and the weights of a given neuron exceeds the predefined
threshold, then the neuron will send a spike to the following layer.

U The networks weights were optimized in MATLAB and stored in the Loihi neuromorphic cores.

:(N\)
|) G/ / YConnected weights
7N N
0 A A
g
o
= [] [
a [
£ o °
[]
|))) 0O
./ Ny’ —~

\AAAA"'A
!

Output spikes

>

22/25

Modified SDN Implementation BRISK

W This simplified version had no learning (it predicted the best route all the times).

U Due to memory limitation, instead of writing all the neurons firing patterns, sum of all the spikes generated by the
input neurons were stored for each execution. The final output of this approach is an 87-character string of numbers
that would be transmitted to earth from the CubeSat to indicate successful execution.

O This output with spaces added in to clarify what the different fields are is shown below:

Output spike

82 1011101111 100 2 1101111110 OO1 2 1101101110 010 8 2 1011101111 100 21101111110

001 2 1101101110 010 8

First '8' shows the program ran until the first Loihi call.

2 - number of input neurons that spiked

1011101111 - spiking pattern of 10 middle layer neurons

100 - spiking pattern of 3 output neurons

2 - start of a repeating pattern for the next execution

The second '8' shows that the program completed the multicore Loihi calls (the first 3 runs).
The third '8' shows all lines of code were executed without error.

pcoooooo

23/25

Conclusion BRISK

COMPUTING

dimplemented SDN application on neuromorphic hardware in space.

Future work:

JExecute developed learning enabled SDN application into space.

24/25

BRISK

COMPUTING

Backup

25/25

Loihi Connection

Connected to server (laptop)

(python3_venv_clone) (loihi_env_clone) brisk@brisk-ils:~
ev 1, Class=root_hub,
ev 1, Class=root_hub,
ev 1, Class=root_hub,
ev 1, Class=root_hub,

Bus 04.Port
Bus 03.Port
Bus 02.Port
01.Port
Port 4:
Port
Port
Port
Port
Port
Port
Port

5:

5:

5:

10:

10:

10:

14:

14:
(python3_venv_cl

test_fpio_loopback: chain=0 chips=2 blocks=1800 time=10436us

1: D
1: D
1: D
1: D
Dev
Zif
Zif
1:
1:
4:
2
2
Dev
Dev
Dev
Dev
Dev
Dev
Dev
Dev
one)

2, If o,
Dev 8,
Dev 8
Dev 4,
Dev 4,
Dev 9,
Dev 6,
Dev 6,
3, If 1,

]

If 2,
If o,
If 1,
0’
1’

]
5:
5:
5!
?J

If
7, If

Class=

Class=Vendor
Class=Vendor
Class=Vendor
Class=Vendor
1, Class=Vendor S

Class=Human Interface Device, Driver=usbhid, 12M
3, If 2, Class=Human Interface Devic
3, If @, Class=Human Interface Device, Driver=usbhid, 12M
Class=Human Interface Devi
Class=Human Interface Device,
Class=Human Interface Device,

Driver=xhci_hcd/4p, 168808M
Driver=xhci_hcd/2p, 488M
Driver=xhci_hcd/8p, 10008M
Driver=xhci_hcd/16p, 488M

cuments fA

480M

Class,

Class,

Class,

Class,

Class, Driver=,
Class, Drive
Class, Driver=,

Class=Wireless, Driver=btusb, 12M
Class=Wireless, Driver=btusb, 12M
(loihi_env_clone) brisk@brisk-ils:~/Documents/An
Using Kapoho Bay serial number 434

(python3_venv_clone) (loihi_env_clone) brisk@brisk-ils:~/Documen

=> 1.53315Mb/s
e

480M
480M
480M
480M
480M
480M
480M

, Driver=usbhid, 12M

, Driver=usbhid, 12M
Driver=usbhid, 12M
Driver=usbhid, 12M

go$ lsusb -t

BRISK

COMPUTING

26/25

Output from Loihi

COMPUTING

1612379556.617951 root DEBUG Entered run_network_onLoihi method:::::: [keras_server_mem.py:179 run_network_onLoihi]
Build finished in @:00:00
| # Optimizing graph: creating signals
612379556.642543 root DEBUG partitions [tensor_graph.py:10866 create_signals]
1612379556.642638 root DEBUG
[T TTEEEETEEENTEEEELTL | [tensor_graph.py:1868 create signals]
Optimization finished in 0:00:00
Construction finished in ©:00:00

B : Connecting to 127.0.0.1:42221
1612379557.824463 DRV Connecting to 127.0.0.1:42221 [host_coordinator.py:75 connect]

8 B Host server up Done 0.20s
1612379557.0826053 DRV Host server up Done 0.20s [nxlogging.py:266 timedContextlLogging]

8 3 Encoding axons/synapses Done 1.34ms
1612379557.028196 DRV INFO Encoding axons/synapses 1.34ms [nxlogging.py:266 timedContextLogging]

A 5 Compiling Embedded snips....Done 0.12s
1612379557.150447 DRV Compiling Embedded snips....Done ©.12s [nxlogging.py:266 timedContextlLogging]

g f Booting up Done 2.95s
1612379560.899556 DRV Booting up .95s [nxlogging.py:266 timedContextlLogging]

8 B Encoding probes Done 0.15ms
1612379560.100240 DRV Encoding probes .15ms [nxlogging.py:266 timedContextLogging]

8 3 Transferring probes Done 1.24ms
1612379560.119232 DRV INFO Transferring probes .24ms [nxlogging.py:266 timedContextLogging]

A 5 Configuring registers Done 7.21ms
1612379560.126871 DRV INFO Configuring registers .21ms [nxlegging.py:266 timedContextlLogging]

g f Transferring spikes Done 2.68ms
1612379560.129928 DRV Transferring spikes .68ms [nxlogging.py:266 timedContextlLogging]

8 B Executing Done 0.09s
1612379560.224451 DRV Executing .09s [nxlogging.py:266 timedContextlLogging]

8 3 Processing timeseries Done 0.79ms
1612379560.225633 DRV INFO Processing timeseries .79ms [nxlogging.py:266 timedContextLogging]

H : Executor: 30 timesteps Done ©0.11s
1612379560.225747 DRV INFO Executor: 30 timesteps .11s [nxlogging.py:266 timedContextlLogging]
Predict Outcome_L is: [[0.49776891 0.54278774 0.62189235]]

Predict Label L is: [2]

8 : Using Kapoho Bay serial number 434
1612379560.236293 HST INFO Using Kapoho Bay serial number 434 [subprocess_logging_handler.py:36 run]

8 : Args chip=0 cpu=0 /home/brisk/python3_venv_clone/lib/python3.5/site-packages/nxsdk/driver/compilers/../../../temp/1612379557.6283532/1launcher_chip®_lmt0.bin --chips=1 --remote-relay=0
1612379560.236421 HST INFO Args chip=0 cpu=8 [home/brisk/python3 venv_clone/lib/python3.5/site-packages/nxsdk/driver/compilers/../../../temp/1612379557.0283532/launcher _chip® lmte.bin --chips
=1 --remote-relay=0 [subprocess_logging_handler.py:36 run]

g : Lakemont_driver...

1612379560.236482 HST INFO Lakemont_driver... [subprocess_logging_handler.py:36 run]

A : chip=0 cpu=0 halted, status=0x0
1612379560.236556 HST INFO chip=0 cpu=0 halted, status=0x8 [subprocess logging_handler.py:36 run]
1612379560.245826 root DEBUG Model output: 1 [keras_server_mem.py:410 flow_route]

1612379560.246007 root DEBUG Loihi output: [2] [keras_server_mem.py:411 flow_route]

Task 3: Integration and Validation

BRISK

COMPUTING

* Goal: To experimentally demonstrate
a LOIHI-based SDN/VNF routing
approach

* Implementation:
* Ryu controller
e Open VSwitch (OVS)
* MPLS routing provided through a VNF

* OVS nodes are virtualized with a 1:1
mapping of ports to physical interfaces

* Hardware OpenFlow switches to be
tested

o)

28/25

Demo

[XK) = demo.mpa

1 Terminal ~ wed 13:59 @ 0B~

ort=3 [router_mpls.py:168 setupMplsPath]
1612378749.186211 root ERROR [s22] ipPkt@LSR: SHOULD NOT BE REACHABLE
STl el A [switch13.py:309 _packet_in_handler]

L ki ooumentncondebanpiegsenessevori rgo N - <72 0o ros b marcRag ! [ipetion loihizs B, act)

. 509272 ool pesla Le AL " on": @}] [agent_keras.py:35 sendReq]

>>>>>>> sendReq rcvd: [{"action_loihi": @, "action": @}]

2 L % : d Route update: identical path, so DO NOT implement

DEBUG Entered run_netwc drrz: eras thi 1612378763.306176 root DEBUG flow_route [agent_keras.py:57 flow_route
1
1612378763.306459 root DEBUG sendReq: [{'type': 'route', 'lerName': '

6 o
B et , ,

: 3.9 root DEBUG s25", 'flowID': 2}] [agent_keras.py:33 sendReq]
,':.’;

\ brisk @brisk-ils: ~/Documents/AnacondaExamples/server_network_nengo
File Edit

G
_graph.py: s 1612378768.128899 root INFO send ARP reply 08:00:27:3d:7d:58 192.168

.108.23 08:00:27:0f:9a:1f 192.168.108.26 [router_arp.py:51 handleArpPkt]
i 1612378768.131928 root DEBUG sendReq rcvd: [{"action_loihi": @, "acti
pritatete s on": 0}] [agent_keras.py:35 sendReq]
s [nxlogging >>>>>>> sendReq rcvd: [{"action_loihi": @, "action": @}]
Route update: identical path, so DO NOT implement
1612378768.190132 root INFO send ARP reply 08:00:27:1f:8a:ff 192.168
Done 1.55ms [nxlogging.p: .101.25 08:00:27:3b:a9:17 192.168.101.27 [router_arp.py:51 handleArpPkt]

..Dene 2. [nxlogging 66 timedContextLoggin

vivee...Done 8.20ms [nxlogging 6 timedCont =

erring probes..... ol s27

NFO0one 1.39ms [nxlogging 6 timedcontext ng] SIOCADDRT: File exists

N . = s [nxlogging.py:266 timedContextlogging] rlent@polaris:~/devel/sdn_exper/Experl$ 1sAC
rlent@polaris:~/devel/sdn_exper/Experl$ sh AC
rlent@polaris:~/devel/sdn_exper/Experl$ cat ini.sh
0.095 [gging. timedConte gging] ssh s26 "ping -cl1 192.168.108.23"
ssh s27 "ping -c1 192.168.101.25"
rlent®polaris:~/devel/sdn_exper/Experl$ sh ini.sh
1s [nxlogging.py timedContextLogging] PING 192.168.108.23 (192.168.108.23) 56(84) bytes of data.
64 bytes from 192.168.108.23: icmp_seg=1 tt1=255 time=2.38 ms

.35ms [nxlogging. 6 timedContextLogging]

e 6.45ns [nxlogging 6 timedContextlLogging]

“f?t g - e P o e I B .) --- 192.168.108.23 ping statistics ---

INFO A Jhome NUsry / Lte- ; = R 1 packets transmitted, 1 received, 0% packet loss, time @Oms
36 run] rtt min/avg/max/mdev = 2.380/2.380/2.380/0.000 ms

PING 192.168.101.25 (192.168.101.25) 56(84) bytes of data.

64 bytes from 192.168.101.25: icmp_seqg=1 tt1=255 time=2.19 ms
loggtng_handler .py
It --- 192.168.101.25 ping statistics ---
1 packets transmitted, 1 received, @% packet loss, time @ms
RS) DO T e rtt min/avg/max/mdev = 2.196/2.196/2.196/0.000 ms
rlent@polaris:~/devel/sdn_exper/Experl$ D

BRISK

COMPUTING

cookie=0x0, duration=68.614s, table=0, n_packets=21, n_bytes=1795, priority=0 actio
ns=CONTROLLER:65535

rlent®s23:~$ sudo ovs-ofctl dump-flows s23

cookie=0x®, duration=29.96@s, table=0, n_packets=4, n_bytes=392, priority=1,icmp,in
_port=enp@s8,nw_src=192.168.108.26,nw_dst=192.168.101.27 actions=push_mpls:0x8847,10
ad:0xe93->0XM_OF_MPLS_LABEL[],output:enp@s1@

cookie=0x0, duration=21.445s, table=@, n_packets=4, n_bytes=408, priority=1,mpls,in
_port=enp@s10,mpls_label=3734 actions=pop_mpls:@x0800,mod_dl_src:08:00:27:3d:7d:58,m
od_dl_dst:08:00:27:0f:9a:1f,output:enpBs8

cookie=0x0, duration=68.968s, table=0, n_packets=21, n_bytes=1795, priority=0 actio
ns=CONTROLLER:65535

rlent@s23:~$ sudo ovs-ofctl dump-flows s23

cookie=0x0@, duration=30.299s, table=@, n_packets=5, n_bytes=49@, priority=1,icmp,in
_port=enp@s8,nw_src=192.168.108.26,nw_dst=192.168.101.27 actions=push_mpls:0x8847,1o
ad:0xe93->0XM_OF_MPLS_LABEL[],output:enp@s1@

cookie=0x0@, duration=21.784s, table=@, n_packets=5, n_bytes=518, priority=1,mpls,in
_port=enp@s1@,mpls_lab 734 actions=pop_mpls:@x0800,mod_dl_src:08:00:27:3d:7d:58,m
od_dl_dst:08:00:27 1f,output:enpBs8

cookie=0x0, duration=69.307s, table=@, n_packets=21, n_bytes=1795, priority=0 actio
ns=CONTROLLER:65535

rlent®s23:~3$ |

ece rlent — rlent@s26: ~ — ssh « ssh -Y rlent@polaris — 84x20
--- 192.168.101.27 ping statistics ---
1 packets transmitted, @ received, 100% packet loss, time Oms

rlent@s26:~$

rlent@®s26:~$ ping -c 1 192.168.101.27

PING 192.168.101.27 (192.168.101.27) 56(84) bytes of data.
64 bytes from 192.168.101.27: icmp_seg=1 tt1=64 time=2.85 ms

--- 192.168.101.27 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time @ms
rtt min/avg/max/mdev = 2.857/2.857/2.857/0.000 ms
rlent®s26:~$ ping -c 10 192.168.101.27

PING 192.168.101.27 (192.168.101.27) 56(84) bytes of data.
64 bytes from 192.168.101.27: icmp_seq=1 tt1=64 time=1.98 ms
64 bytes from 192.168.101.27: icmp_seq=2 ttl=64 time=1.71 ms
64 bytes from 192.168.101.27: icmp_seq=3 ttl=64 time=1.72 ms
64 bytes from 192.168.101.27: icmp_seq=4 ttl=64 time=1.73 ms
64 bytes from 192.168.101.27: icmp_se ttl=64 tim .75 ms
64 bytes from 192.168.101.27: icmp_seq=6 tt1=64 time=1.74 ms

o14s M el

29/25

	Slide 1
	Slide 2: Overview
	Slide 3: Cognitive Network
	Slide 4: Software-Defined Networking (SDN)
	Slide 5: Cognitive Network Architecture
	Slide 6: Software Architecture
	Slide 7: Design Principles
	Slide 8: Agent Base Class
	Slide 9: Route Adaptation
	Slide 10: Experimental Setup
	Slide 11: Reinforcement Learning on Intel Loihi
	Slide 12: Intel’s Neuromorphic Processor (Loihi)
	Slide 13: Loihi Kapoho Bay on Laptop at Brisk
	Slide 14: Agent’s Structure
	Slide 15: Dataset Processing
	Slide 16: Distributed Test Environment
	Slide 17: Results: Shortest Path
	Slide 18: Random Path
	Slide 19: Neural Networks
	Slide 20: Energy Calculation
	Slide 21: Space Exploration for Future Technology
	Slide 22: Modified SDN Implementation
	Slide 23: Modified SDN Implementation
	Slide 24: Conclusion
	Slide 25
	Slide 26: Loihi Connection
	Slide 27: Output from Loihi
	Slide 28: Task 3: Integration and Validation
	Slide 29: Demo

