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Introduction: Quantum Computing

* Quantum computing is an emerging technology that aims to speed up and
enhance the performance of classical computing in different areas,
including machine learning, cybersecurity, and more [1].

* The basic idea is that quantum computers utilize qubits to speed up and
strengthen data processing.



Introduction: Solar Flares and Geomagnetic

Storms

 Solar flares and geomagnetic storms impact space technologies and
infrastructure.

* Disruptions in communication systems, power grids, and satellite
operations [2, 3, 4].

 Solar radiation is a crucial component of space weather.

 Solar flares and geomagnetic storms caused by release of solar radiation [2,
5].



Introduction: Importance of Predicting Solar

Radiation

* Predicting solar radiation enables early warning alerts Identifies patterns
and trends in solar activity.

* Helps issue early warnings to space agencies and critical systems operators
[6, 7].

* Precautions can be taken to protect astronauts, satellites, and stabilize
power grids.



Introduction: Traditional Methods Limitations

* Traditional methods for detecting and forecasting space weather reliance
on statistical models and empirical data analysis.

* Limited accuracy and speed [6, 8, 9, 10, 11] Potential disruptions and
damage to critical infrastructure.



Research Objective

* The goal of the proposed HCQNN is to Integrate superposition, nonlinear
entanglement, and quantum activation functions with classical NN to
enhance the detection of geomagnetic storms by analyzing space weather,
including solar radiation.



The Proposed HCONN
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The Quantum Layer: The Variational Quantum
Circuit (VQC)




The Quantum Layer Components

» Superposition: The H gates.

* Encoding: The angle embedding encoding technique [12, 13] using the Rx
gates.

* Entanglement layer: The CNOT gates.



The Quantum Layer Components

* Quantum activation function au (8, ¢, A): Represents the unitary
transformation of the entangled quantum states [14, 15].
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* Measurements: Measures and collapses the entangled quantum states into
classical data to be fed to the last dense layer to perform the classification.



Experiments and Results: Dataset

* To evaluate the performance of the HCQNN, we tested it using a solar
radiation space weather dataset generated from the Hawai‘i Space
Exploration Analog and Simulation (HI-SEAS) station [16].

* The dataset contains 32687 samples and 10 features.



Experiments and Results: Preprocessing

* To make the dataset suitable to detect geomagnetic storms:
* We studied the relationship between solar radiation and each other.
features in the dataset.

* We found that pressure, humidity, wind speed, and direction exhibited the
most significant correlations with solar radiation.



Experiments and Results: Preprocessing
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Experiments and Results: Preprocessing

e Solar radiation is measured using Solar Flux Unit (SFU) and one SFU =
10722 W /m"2 [17].

e Geomagnetic storms occur when solar radiation reaches or exceeds 10
SFU [2, 5].

e We added a new column called "label”, which assigns a specific label of
GeomagneticStorm or NoStorm to each sample based on the solar
radiation level.

e For example, a sample that has solar radiation 210 is labeled as
GeomagneticStorm.

e After labeling each sample, we standardized and normalized the dataset.



Experiments and Results: Setup

Packaged used Pennylane, Qiskit tensorflow, keras, numpy, All the classical and quantum packages that are used to
matplotlib, mpl_toolkits, sklearn, and pandas process the proposed HCQNN approach
Training dataset size 818 The size of the training dataset to learn the HCQNN model
Testing dataset size 246 The size of the testing dataset to test the HCQNN model
6 Number of the features in the dataset
Batch size 5 The number of samples that will be propagated and passed
through the HCQNN at one time.

10-100 Number of times to run the quantum circuits of the HCQNN
and benchmark models to generate the measurements
results

6 Number of qubits used to process the dataset

default.qubit Pennylane quantum circuit simulation

IBM quantum ibm-q The provider of the IBM quantum service that allows the
computer service execution of the NLQNN on the backend that runs the
provider quantum computer

ibm_oslo 7-qubit IBM quantum computer



Experiments and Results: Results

" fpohs | Approsch | Acwoy% | Recall | Precsion | Fscore | Eworrate | Walltimeinminutes

HCQNN 98.079 98.14 98.015 98.421 1.92
LHCQNN 82.146 84.784 85.95 82.673 17.8 16.4
HCQNN 98.126 98.241 98.111 98.512 1.92 22
LHCQNN 82.146 84.784 85.95 82.673 17.8 24
HCQNN 98.211 98.256 98.170 98.579 18 35.9
LHCQNN 82.146 84.784 85.95 82.673 17.8 37.9
HCQNN 98.251 98.289 98.211 98.598 175 46
LHCQNN 82.146 84.784 85.95 82.673 17.8 50
HCQNN 98.455 98.469 98.242 98.624 1.545 56.92
LHCQNN 82.146 84.784 85.95 82.673 17.8 59.55
HCQNN 98.461 98.577 98.276 98.704 1.541 67.25
LHCQNN 82.146 84.784 85.95 82.673 17.8 69.30
70 HCQNN 99.650 99.241 98.970 99.732 035 82
LHCQNN 82.146 84.784 85.95 82.673 17.8 90.9
HCQNN 99.702 99.422 99.121 99.810 0.35 95.8
LHCQNN 82.146 84.784 85.95 82.673 17.8 97
HCQNN 99.741 99.624 99.526 99.885 0.259 111
LHCQNN 82.146 84.784 85.95 82.673 17.8 113.91
100 HCQNN 99.921 99.928 99.751 99.921 0.079 126

LHCQNN 82.146 84.784 85.951 82.673 17.8 138




Conclusion

* Proposed a HCQNN that integrates superposition, entanglement, and
guantum activation function for enhancing the detection geomagnetic

storms.

e Compared the HCQNN with a classical NN, HCQNN outperformed with
better performance results.

* The results indicts that the HCQNN, is an effective strategies for mitigating
space weather impacts on technological infrastructure.



Future Work

* Adding more quantum layers to the proposed HCQNN.

* Applying it to more complex and larger datasets.
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