Cognitive Communications for Aerospace Applications Workshop (CCAAW) 2023

Securing Space Cognitive Communication with Blockchain

Authors:

Dipen Bhuva

Sathish Kumar Ph.D.

Outline

- \bullet Primary Objectives
- \bullet What is Blockchain
- \bullet • Blockchain Protocols
- \bullet • Related Works
- \bullet Work Flow
- \bullet • Blockchain Architecture
- •Primary Experiment
- \bullet • Results
- \bullet • Future Work
- \bullet Conclusion
- \bullet References

Primary Objectives

Objective of this research is to:

- • Introduce blockchain-enabled Proof-of-Stake(PoS) protocol
- decentralized access control,
- •decentralized authentication,
- • Automatic vulnerability correction algorithm for smart contract administrators
- \bullet Enable efficient protection and provides decentralized solution for space situational awareness within space networks
- • Ensuring the confidentiality and integrity of data transmitted between space nodes.

 \bullet Blockchain is a secure, transparent, decentralized ledger technology. Ethereum, a widely-used blockchain platform, allows for developing and deploying smart contracts—automated, programmable scripts that streamline processes and enforce agreements [15].

[15] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," *Eip-150 Revision*, 12- Apr-2017. [Online]. Available: https://www.gavwood.com/paper.pdf. [Accessed: 19-Apr-2023].

- **Proof of Work (PoW):** Participants solve complex mathematical puzzles to validate transactions and secure the blockchain.
- **Proof of Stake (PoS):** Participants are chosen to validate transactions based on the number of tokens they hold and are willing to "stake" as collateral.
- **Delegated Proof of Stake (DPoS):** A variant of PoS where participants elect delegates to validate transactions on their behalf.
- **Proof of Authority (PoA):** Validators are known and trusted entities authorized to validate transactions based on their identity or reputation.

Ethereum Version 2

- Ethereum is ^a decentralized platform that allows developers to build decentralized applications (dApps) using smart contracts.
- Ethereum Version 2 is an Ethereum network upgrade aiming to improve scalability and security. It introduces proof of stake consensus, which is ^a more energy-efficient and secure alternative to the current proof of work consensus algorithm.
- Validators are chosen to add new blocks to the blockchain based on the amount of cryptocurrency they hold and are willing to lock up as collateral.

[15] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," *Eip-150 Revision*, 12- Apr-2017. [Online]. Available: https://www.gavwood.com/paper.pdf. [Accessed: 19-Apr-2023].

Ethereum Version 2

 \bullet Solidity is the main programming language for Ethereum smart contracts, enabling developers to build intricate applications on the platform [15]. It can be possible through various frameworks:

[15] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," *Eip-150 Revision*, 12- Apr-2017. [Online]. Available: https://www.gavwood.com/paper.pdf. [Accessed: 19-Apr-2023].

Smart Contracts

- \bullet Self-executing digital contract with the terms of the agreement directly written into code.
- \bullet Built on blockchain technology, typically on platforms like Ethereum, and operates automatically without the need for intermediaries.
- Secure, transparent, and tamper-proof transactions between parties.
- \bullet Only executed when specific conditions encoded in the contract are met, ensuring trust and eliminating the need for third-party enforcement.
- Smart contracts are immutable.
- \bullet High level of transparency, allowing participants to view and verify contract details.
- \bullet Various applications such as financial services, supply chain management, real estate, voting systems, and many more.

Common Vulnerabilities

Smart contracts can have vulnerabilities leading to security issues or fund loss. Common Ethereum smart contract vulnerabilities include reentrancy, integer overflow, and improper access control [16]:

- **1. Reentrancy:** Occurs when ^a function permits external calls to untrusted contracts before resolving, allowing attackers to repeatedly call the function and drain funds.
- **2. Integer Overflow:** Happens when an operation exceeds the maximum value of its data type, causing unexpected behavior and potential security issues.
- **3. Improper Access Control:** Arises when ^a smart contract fails to restrict access to functions or state variables, enabling unauthorized users to execute functions or alter state variables.

Related Work

Work Flow

Blockchain Architecture

- For primary experiment we have used:
- • Raspberry Pi and a 16GB RAM MacBook Pro to simulate a satellite and ground station, respectively, on a private Ethereum v2 blockchain network
- \bullet NASA ‐provided meteorological measurements for data transmission.
- \bullet Python Scripts for automated detection of vulnerability in smart contracts

Experimental Setup

Latency for 50 data transaction

- \bullet As we can see, our approach has less latency when compared to the current to PoST.
- • Our approach takes 7.16 and 33.81 seconds to send and receive, respectively, for 50 transactions.
- \bullet In contrast, it takes 29.73 and 71.81 to send and receive 50 transactions by PoST protocol with fernet encryption and decryption[8].

Transaction Latency -- Read Latency Transaction Latency Read Latency

^[8] M. Torky, T. Gaber, E. Goda, V. Snasel, and A. E. Hassanien, "A blockchain protocol for authenticating space communications between satellites constellations," Aerospace, vol. 9, no. 9, p. 495, 2022.

Latency for 100 data transaction

- • Our approach takes 22.05 and 72.56 seconds to send and receive, respectively, for 100 transactions.
- \bullet In contrast, it takes 104.35 and 93.92 to send and receive 100transactions by PoST protocol with fernet encryption and decryption [8].

[8] M. Torky, T. Gaber, E. Goda, V. Snasel, and A. E. Hassanien, "A blockchain protocol for authenticating space communications between satellites constellations," Aerospace, vol. 9, no. 9, p. 495, 2022.

Latency for 150 data transaction

- \bullet Our approach takes 38.58 and 117.1 seconds to send and receive, respectively, for 150 transactions.
- • In contrast, it takes 142.1 and 162.37 to send and receive 150 transactions by PoST protocol with fernet encryption and decryption [8].

...... Transaction Latency Read Latency

[8] M. Torky, T. Gaber, E. Goda, V. Snasel, and A. E. Hassanien, "A blockchain protocol for authenticating space communications between satellites constellations," Aerospace, vol. 9, no. 9, p. 495, 2022.

Latency for 250 data transaction

- • Our approach takes 72.5 and 208.58 seconds to send andreceive, respectively, for 250 transactions.
- \bullet In contrast, it takes 265.59 and 255.1 to send and receive 250 transactions by PoST protocol with fernet encryption and decryption [8].

^[8] M. Torky, T. Gaber, E. Goda, V. Snasel, and A. E. Hassanien, "A blockchain protocol for authenticating space communications between satellites constellations," Aerospace, vol. 9, no. 9, p. 495, 2022.

- Following Table clarifies the effects of the 2049 transactional data size with respect to transaction cost (gas) on Reading Throughputs (RT) and Transaction Throughputs (TT).
- It also represents the average CPU load of raspberry pi when interacting with our blockchain architecture from a scale of 0-6.

 \bullet Following table shows confusion matrix parameters and computing True Positive Rate (TPR), True Positive Rate (TNR), and Accuracy.

Future Work

- Incorporate a larger number of nodes, zero-knowledge proofs for enhanced privacy and optimizing the performance of the smart contract
- Simulating diverse network conditions, including nodes with limited connectivity, would help evaluate the system's resilience.
- Additionally, incorporating disconnected wallets would allow for a comprehensive assessment of the system's fault tolerance.
- Adequate number of validators in a PoS Ethereum network with respect to security, resource constraints, network latency, decentralization

Conclusion

- \bullet Introduced a Solidity smart contract for data storage and access control in a decentralized manner
- \bullet Python script for auto-patching common vulnerabilities in Solidity code.
- • Secure, decentralized solution for space situational awareness, ensuring the confidentiality and integrity of data transmitted between nodes.
- • Auto-patching script helps to enhance the security of the smart contract code, reducing the risk of potential vulnerabilities being exploited.
- \bullet Most efficient with regard to performance, latency, transaction throughput, read throughput, gas consumption when performing data transactions, and security.

THANK YOU

Dipen Bhuva – d.bhuva@vikes.csuohio.edu Sathish Kumar, PhD – s.kumar@csuohio.edu

References

- 1) B. D. Little and C. E. Frueh, "Space situational awareness sensor tasking: Comparison of machine learning with classical optimization methods," *Journal of Guidance, Control, and Dynamics*, vol. 43, no. 2, pp. 262– 273, 2020.
- 2) R. Xu, Y. Chen, E. Blasch, and G. Chen, "Exploration of blockchain-enabled decentralized capability-based access control strategy for Space Situation Awareness," *Optical Engineering*, vol. 58, no. 04, p. 1, 2019.
- 3) S. Cao, S. Dang, Y. Zhang, W. Wang, and N. Cheng, "A blockchain-based access control and intrusion detection framework for Satellite Communication Systems," *Computer Communications*, vol. 172, pp. 216– 225, 2021.
- 4) S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, "VURLE: Automatic vulnerability detection and repair by learning from examples," *Computer Security – ESORICS 2017*, pp. 229–246, 2017.
- 5) C. Li, X. Sun, and Z. Zhang, "Effective methods and performance analysis of ^a satellite network security mechanism based on Blockchain technology," *IEEE Access*, vol. 9, pp. 113558–113565, 2021.
- 6) J. Yang, S. He, Y. Xu, L. Chen and J. Ren, "A trusted routing scheme using blockchain and reinforcement learning for wireless sensor networks", *Sensors*, vol. 19, no. 4, pp. 1-19, 2019.
- 7) S. A. Surdi, "Space situational awareness through Blockchain Technology," *Journal of Space Safety Engineering*, vol. 7, no. 3, pp. 295–301, 2020.
- 8) M. Torky, T. Gaber, E. Goda, V. Snasel, and A. E. Hassanien, "A blockchain protocol for authenticating space communications between satellites constellations," *Aerospace*, vol. 9, no. 9, p. 495, 2022.
- 9) N. A. NA, "A python interface for interacting with the Ethereum blockchain and ecosystem.," *interacting with the Ethereum blockchain and ecosystem.*, 2023. [Online]. Available: https://web3py.readthedocs.io/en/latest/#. [Accessed: 14-Apr-2023].

References

- 10. P. Merriam, "Py-SOLC-X," *solc*, 2016. [Online]. Available: https://solcx.readthedocs.io/en/latest/. [Accessed: 14-Apr-2023].
- 11. N. A. NA, "Fernet (symmetric encryption)," *Fernet (symmetric encryption) - Cryptography 41.0.0.dev1 documentation*, 2023. [Online]. Available: https://cryptography.io/en/latest/fernet/. [Accessed: 14-Apr-2023].
- 12. Behrenfeld, M. (2022). *NAAMES Sonde meteorological* . NASA. Retrieved April 14, 2023, from https://data.nasa.gov/dataset/NAAMES-Sonde-Meteorological-InSitu-Data-Version-1/vuj8-3hmw
- 13. N. A. NA, "Goerli/medalla: Ethereum 2.0 multi-client testnets," *GitHub*, 2022. [Online]. Available: https://github.com/goerli/medalla. [Accessed: 15-Apr-2023].
- 14. I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A survey," *Computer Networks*, vol. 50, no. 13, pp. 2127– 2159, 2006.
- 15. G. Wood, "Ethereum: A secure decentralised generalised transaction ledger," *Eip-150 Revision*, 12-Apr-2017. [Online]. Available: https://www.gavwood.com/paper.pdf. [Accessed: 19-Apr-2023].
- 16. N. Atzei, M. Bartoletti, and T. Cimoli, "A survey of attacks on Ethereum Smart Contracts (SOK)," Lecture Notes in Computer Science, pp. 164–186, 2017.

ANY
QUESTIONS?

