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MOTIVATION

• Current need to demonstrate desired 

network optimization for the highly 

diverse and dynamic quality of  

service (QoS) requirements of  

space-based networks and provide 

seamless inclusion of  delay-tolerant 

networks. 

5G Space Network

URLLC Slice

Mission Critical 

C2

mMTC Slice

Internet of  Space 

Things eMBB Slice

Video and 

telemetry



WHY 5G + OFFLINE REINFORCEMENT LEARNING 

Higher Data Rates • Lower Latencies • Increased 

Reliability • Flexible network management

But lacks efficient and optimized radio resource 

management (RRM) strategies

Exploiting offline RL for optimized RRM for 

challenging and dynamic operating requirements 



SYSTEM MODEL



WHAT LEARNING PARADIGM FOR SPACE BASED 

NETWORKS?

[4] S. Levine, A. Kumar, G. Tucker and J. Fu, "Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems," arXiv preprint, vol. arXiv:2005.01643v3, 2020. 

Train on large previously collected 
datasets from arbitrary policies to learn a 
better policy

Potential to achieve high performance 
and generalization capacity

Offline reinforcement learning?Reinforcement learning?
Good for learning optimal 
control policies

Active and online process 

Requires many iterations to 
converge

Need to re-collect data each 
time algorithm is trained 

Supervised learning?

Do not have labeled data for 
optimal actions



OFFLINE RL – BENEFITS AND CHALLENGES

• Benefits

• Large datasets -> better generalization and performance

• Re-use previous datasets

• Challenges

• Static dataset

• Distribution shift

• Solutions

• Policy Constraints

• Conservative Algorithms

• Uncertainty Estimation



OFFLINE RL FOR NETWORK SLICING
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Dataset Collection

• Deploy arbitrary policies onto 5G 

network and record transition data

• This work uses transitions from 

training online RL algorithms

Offline RL Training

• Train offline RL agent using dataset 

D

Deploy RL Agent

• Use trained RL agent for 5G network 

slicing



RRM FORMULATION

• Dynamic wireless bandwidth allocation in 5G downlink for single base station [5]

• N - no. of  network slices

• W - total bandwidth

•  d = (𝑑1, . . . , 𝑑𝑁) – current demands of  each slice

• System utility - 𝛼𝑆𝐸 +  σ𝑛∈𝑁 𝛽𝑛𝑆𝑆𝑅𝑛

• Find 𝒘 = (𝑤1, . . . , 𝑤𝑁) that maximizes system utility, max
w

(𝛼𝑆𝐸 +  σ𝑛∈𝑁 𝛽𝑛𝑆𝑆𝑅𝑛) 

• RL formulation

• Observation space – no. of  arrived packets for each slice in time window

• Action space – bandwidth allocation to each slice

• Reward function – utility function

[5] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao and H. Zhang, "Deep Reinforcement Learning for Resource Management in Network Slicing," IEEE Access, pp. 74429-74441, 2018. 



SIMULATION SETTINGS

Setting VoLTE Video URLLC

Bandwidth
10 MHz

Scheduling
Round robin per slot (0.5 ms)

Slice band adjustment
1 second (2,000 scheduling slots)

Channel
Rayleigh fading

User No 46 46 8

Distribution of Inter-

Arrival Time per user

Uniform [Min = 0, 

Max = 160 ms]

Truncated stationary 

distribution 

[Exponential Para = 1.2,

Mean = 6 ms, Max = 

12.5 ms]

Exponential [Mean = 

180 ms]

Distribution of Packet 

Size

Constant (40 byte) Truncated Pareto 

[Exponential Para = 1.2,

Mean = 100 byte,

Max = 250 byte]

Variable constant: 

{0.3, 0.4, 0.5, 0.6, 0.7} 

Mbyte

SLA: Rate 51 Kbps 100 Mbps 10 Mbps

SLA: Latency 10 ms 10 ms 3 ms

• VoLTE, Video, and URLLC slices

• UEs within 100m radius of  base station

• Each slice’s network traffic is modeled 

with inter-arrival time and packet size 

distributions

• Each slice has service level agreements 

specified by data rate and latency

• Bandwidth allocation resolution: 1 MHz

• System utility settings: α = 0.001 and β = 

(1,1,2). 

• Python simulation environment from [6-7]

[6] Y. Hua, R. Li, Z. Zhao, X. Chen and H. Zhang, "GAN-Powered Deep Distributional Reinforcement Learning for Resource Management in Network Slicing," IEEE Journal on Selected Areas in Communications, vol. 38, no. 2, pp. 

334-349, 2020. 

[7] R. Li, C. Wang, Z. Zhao, R. Guo and H. Zhang, "The LSTM-Based Advantage Actor-Critic Learning for Resource Management in Network Slicing With User Mobility," IEEE Communications Letters, vol. 24, no. 9, pp. 2005-

2009, 2020. 

 



ALGORITHMS EVALUATED

• Offline RL algorithms

• Conservative Q Learning (CQL) [10]

• Batch Constrained Deep Q Learning (BCQ) [11]

• Trained on transitions from training online RL algorithms

• d3rlpy library [12]

• Online RL algorithms

• DQN

• GAN-DDQN [6]

• LSTM A2C [7]

• Hard Slicing – equal bandwidth allocated to each slice

• No Slicing – round robin scheduling across all slices
[6] Y. Hua, R. Li, Z. Zhao, X. Chen and H. Zhang, "GAN-Powered Deep Distributional Reinforcement Learning for Resource Management in Network Slicing”

[7] R. Li, C. Wang, Z. Zhao, R. Guo and H. Zhang, "The LSTM-Based Advantage Actor-Critic Learning for Resource Management in Network Slicing With User Mobility" 

[10] A. Kumar, A. Zhou, G. Tucker and S. Levine, "Conservative Q-Learning for Offline Reinforcement Learning," 

[11] S. Fujimoto, D. Meger and D. Precup, "Off-Policy Deep Reinforcement Learning without Exploration” 

[12] T. Seno and M. Imai, "d3rlpy: An Offline Deep Reinforcement Library"

. 
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CQL
4.05 164.74 1.0 0.99 0.95 1 3 6

BCQ
4.05 164.74 1.0 0.99 0.95 1 3 6

DQN
4.05 164.74 1.0 0.99 0.95 1 3 6

Dueling 

GAN-DDQN

4.06 164.51 1.0 0.99 0.95 1 3 6

Hard Slicing

3.06 204.74 1.0 0.99 0.43 3.33 3.33 3.33

No Slicing

2.91 443.70 1.0 1.0 0.23 0.70 8.46 0.40

Scenario: Demand-aware Resource 

Management

Findings

• Offline RL algorithms achieved similar performance 

as online RL algorithms

• Each RL algorithm converged to constant BW 

solution

• RL algorithms achieve SSRs of  at least 95% for each 

slice

• Hard slicing’s 3.33 MHz bandwidth is insufficient for 

URLLC

• No Slicing’s global round robin scheduling does not 

account for larger size and lower rate of  URLLC 

packets. RR updates every scheduling interval, 

resulting in highest SE

• RL algorithms trade off  lower SE to meet QoS 

requirements due to time and frequency resolution 

of  bandwidth allocation

Need for RL algorithms to allocate bandwidth at finer 

resolution. 



CONCLUSIONS AND FUTURE WORK

• Motivated 5G and network slicing for improving space-based networks

• Evaluated offline RL algorithms for optimization of  5G radio resource management

• Future work

• Improve realism in simulator

• Dynamic scenarios

• Increase frequency-time resolution of  resource allocation

• Delays and disruptions of  space networks

• Flexible resource allocation with RL

• Offline RL with online RL for fine-tuning

• Training dataset comparisons
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RESULTS

Scenario: Dynamic Environment

Findings

• RL algorithms generally improve SSR of  URLLC 

slice

• CQL and BCQ failed to converge - lower reward 

than DQN and LSTM A2C. Insufficient BW to 

URLLC slice

• RL algorithms have lower SE due to low time and 

frequency resolution in bandwidth allocation.

Need for RL algorithms to allocate bandwidth at finer 

resolution. 
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CQL 5.47/1.4

8

265.96 1.0 1.0 0.81 1.62 3.66 4.72

BCQ 5.44/0.9

6

267.84 1.0 1.0 0.77 1.85 3.66 4.49

DQN 

offline

5.44/3.1 250.58 1.0 1.0 0.94 1.1 3.26 5.68

LSTM A2C 5.35/3.6 238.63 1.0 1.0 0.96 1 3 6

Hard 

Slicing

5.11/-

1.53

256.87 1.0 1.0 0.55 3.33 3.33 3.33

No Slicing 7.39/1.1

3

460.06 1.0 1.0 0.80 0.33 7.20 1.77

Differences

• Mobile UEs.

• System utility settings: α = 0.01 and β = (1,1,1).

• URLLC latency 1 ms

• URLLC packet size 0.3 Mbyte

• Reward shaping
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