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My mission is to develop rigorous first-principles for engineering AI-heavy systems.

"In order to improve your game, you must study the endgame before everything 
else, for whereas the endings can be studied and mastered by themselves, the 

middle and the opening must be studied in relation to the endgame."
 

- Jose Raul Capablanca

• I am a systems theorist and machine learning 
engineer. 

• I develop and apply systems theory to bridge 
systems engineering and artificial intelligence.
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Mesarovician Abstract Systems Theory
A system is defined as a relation on sets

𝑆 ⊂	× 𝑉! ∶ 𝑖 ∈ 𝐼 ,
and theory is developed by specifying that relation and those sets to 
formalize phenomena of interest.
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Top-Down Formalization of Learning Systems
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At a high level, learning systems 
are input-output systems:

𝑆: 𝐷	×	𝑋 → 𝑌.

Cody, Tyler. "Mesarovician abstract learning systems." Artificial General Intelligence: 14th International Conference, 
AGI 2021, Palo Alto, CA, USA, October 15–18, 2021, Proceedings 14. Springer International Publishing, 2022.
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At a high level, learning systems 
are input-output systems:

𝑆: 𝐷	×	𝑋 → 𝑌.

A level deeper, are a coupling of 
input-output systems 𝐴 and 𝐻.

Cody, Tyler. "Mesarovician abstract learning systems." Artificial General Intelligence: 14th International Conference, 
AGI 2021, Palo Alto, CA, USA, October 15–18, 2021, Proceedings 14. Springer International Publishing, 2022.
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𝐸: 𝑉×𝐷 → Θ

At a high level, learning systems 
are input-output systems:

𝑆: 𝐷	×	𝑋 → 𝑌.

A level deeper, are a coupling of 
input-output systems 𝐴 and 𝐻.

A level deeper still, we find 𝐴	is 
not a composition, but specified 
by a closed subsystem formed 
by 𝐺 and 𝐸. 
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At a high level, learning systems 
are input-output systems:

𝑆: 𝐷	×	𝑋 → 𝑌.

A level deeper, are a coupling of 
input-output systems 𝐴 and 𝐻.

A level deeper still, we find 𝐴	is 
not a composition, but specified 
by a closed subsystem formed 
by 𝐺 and 𝐸. 
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Levels of 
Abstraction in 
Learning Systems

• Elementary Level

• Cascade Level

• Goal-Seeking Level
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He et. al’s Method 

• He et al. provide an explainable deep reinforcement learning (RL) 
method for autonomous path planning
• They contribute
• (1) a deep neural network (DNN) based reactive controller that can be used 

for small UAVs with limited computational resources and scenarios requiring 
rapid reaction to changes in the environment
• (2) a novel explanation framework to explain the DNN-based controller

• They evaluate in the real-world, thereby providing a case study in 
explainable deep RL for UAV path planning with real-world 
experiments

He, Lei, Nabil Aouf, and Bifeng Song. "Explainable Deep 
Reinforcement Learning for UAV autonomous path 
planning." Aerospace science and technology 118 (2021): 107052.
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He et. al’s Formulation
• Path planning in an unknown environment is treated as a sequential 

decision making problem
• At each time step, only the current sensor information is used to generate 

the control signal (Markov assumption)
• Assume UAV has a 3D departure position and target destination
• The state at each time step has both the raw depth image from the UAV’s 

camera as well as UAV state features for current velocities and relative 
position
• To get a smooth control command, they use Twin Delayed DDPG (TD3)
• They use a combination of AirSim and Gazebo for training
• They use Shapely values to extend existing explanation methods CAM and 

Grad-CAM
tcody@vt.edu 13



Elementary Level
• In RL, we know that data 𝒟 consists of 

states, actions, and rewards
• Inputs 𝒳 are states 𝑆 and outputs 𝒴 

are actions 𝐴
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Cascade Level
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Goal-Seeking Level

• In RL, the Q-value is the maximum 
expected future reward for a given 
state and action
• For TD3, ℰ is simply a maximization of 

the expected Q-values over Θ
• 𝒢 is more complex, and includes 

clipped double-Q learning, delayed 
policy updates, and target policy 
smoothing
• Adding detail to 𝒢 and ℰ bring the 

model near the level of the RL solution 
method
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He et. al’s Explainability Method
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Auxiliary (Explainability) Functions
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