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Academic Mission

* | am a systems theorist and machine learning

engineetr.
* | develop and apply systems theory to bridge
systems engineering and artificial intelligence.

My mission is to develop rigorous first-principles for engineering Al-heavy systems.

"In order to improve your game, you must study the endgame before everything
else, for whereas the endings can be studied and mastered by themselves, the
middle and the opening must be studied in relation to the endgame."

- Jose Raul Capablanca
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Executive Summary
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Combinatorial coverage metrics have a high correlation with
accuracy on batches of spectrograms, therefore they can be
used to anticipate error in spectrogram classification.
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Deep Spectrogram Classification

* Variety of applications in
literature including to coexist
with and discern primary user,
spectrum sharing scenarios,
spectrum occupancy
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Preliminaries on Coverage

Definition 1. {-way Combinatorial Coverage.

Consider a universe with k factors such that U is the set of
all valid k-way value combinations. Let U be the set of valid
t-way combinations. Given a set of data D C U, let D' define
the set of t-way value combinations appearing in D. The t-way
combinatorial coverage of D is

Dt
CCH(D) = .

where |D| denotes the cardinality of D.

SDCC 1is alternatively measures the proportion of valid ¢-

way value combinations that appear in one set relative to
another set. SDCC 1is defined in the following [12].



Preliminaries on Coverage

Definition 2. t-way Set Difference Combinatorial Coverage.
Let D4 and Dpg be sets of data, and D ot and Dg® be the
corresponding t-way sets of data. The set difference Dg*\ D 4*
gives the value combinations that are in Dg" but that are not
in DAt. The t-way set difference combinatorial coverage is
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Method

We propose a method to learn a latent space for spectro-
grams that 1s meaningful for coverage analysis of classification
accuracy. Our method consists of three steps.

1) First, use a deep autoencoder to encode spectrograms
from pixel-space to a lower-dimensional representation.

2) Second, use metric learning techniques for dimension
reduction to further reduce the dimensionality of the
encoded spectrograms.

3) Last, to discretize the data, apply k-means clustering to
the metric learning spaces and to the reconstruction error
of the autoencoder.
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Metric Learning Methods

* We use PCA, NCA, and LMNN

* PCA is principal component analysis

 NCA is a variation on k-nearest neighbors (KNN) classification that directly
maximizes a variant of leave-one-out performance

e LMNN is a variation on KNN classification that learns a Mahalanobis distance

Cody, Tyler, and Laura Freeman. "Metric Learning Improves the Ability of
Combinatorial Coverage Metrics to Anticipate Classification Error." 2023 IEEE
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 2023.



Data
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Encoding

Without filter
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Cross-Validation

SDCC? SDCC?

sbcc*

Results
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Batch Results Plot

SDCC? 3:4 for All Batch Sizes and Their Incorrect/Correct Subsets
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Batch Results Table

MEAN AND STANDARD DEVIATION OF PEARSON CORRELATIONS
BETWEEN ACCURACY AND SDCC

TABLE 1

Batch Size t=2 t=3 t=4

100 (-0.87, 0.16) (-0.94, 0.03) (-0.95, 0.04)
200 (-0.84, 0.28) (-0.80, 0.58) (-0.77, 0.58)
300 (-0.93, 0.02) (-0.95, 0.03) (-0.93, 0.08)
400 (-0.92, 0.07) (-0.96, 0.04) (-0.97, 0.02)
500 (-0.90, 0.11) (-0.94, 0.07) (-0.95, 0.05)
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