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Feed-Forward Neural Networks consume fixed-size ordered data.
E.g. vectors
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Recurrent Neural Networks consume arbitrary-size ordered data.
l.e. sequences
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This Talk: Neural Networks that consume arbitrary-size un-ordered data.
l.e. sets
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Point Clouds



F : Fin(Q2) — R"

Permutation-Invariant Cardinality-Agnostic



PointNet and DeepSets
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PointNet and DeepSets

Fpn(A) =1 (max @(&)) (i et al. 2017)
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FDS(A) — w (Z SO(CL)> (Zaheer et al. 2017)
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PointNet and DeepSets

Fpn(A) =1 (max @(&)) (i et al. 2017)
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Refactor
FpszpomaXf FDS:@DOaVef
(maxys); = maxy, (avey); = avey,

maxy, : Fin(2) — R aver, : Fin(Q2) — R



Continuity?

FpszpomaXf FDS:@DOaVef
(maxys); = maxy, (avey); = avey,
maxy, : Fin(2) — R aver, : Fin(Q2) — R

What topologies yields continuity on Fin(2)?
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Continuity?

Fpn = 1% omaxy Fps =1 oavey
(maxys); = maxy, (avey); = avey,
maxy, : Fin(2) — R aver, : Fin(Q2) — R

What topologies yields continuity on Fin(2)?
(C(82), dmr) (P(£2), dw)

Space of nonempty compact subsets Space of Borel probability measures
with Hausdorff metric dy with Wasserstein metric dy,




Upgrade: Unigue Continuous Extension

FPN:wOMaXf FDS:@DOAVGJC
Mas, (4) = max f,(a) Avey, (1) = Eqmplfi()
Maxy, : (K(2),dy) — R Avey, : (P(Q?),dw) — R
T T
Space of nonempty compact subsets Space of Borel probability measures

with Hausdorff metric dy with Wasserstein metric dy,



Upgrade: Unigue Continuous Extension

FPN:wOMaXf FpsszAVGf
Masj, (4) = max f,(a) Aves, (1) = Eqmplfi(a)
Maxy, : (K(Q),dy) — R Avey, : (P(Q),dw) = R
T T
Space of nonempty compact subsets Space of Borel probability measures
with Hausdorff metric dy Intuition with Wasserstein metric dyy,
p:Q—Q

polynomial
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Upgrade: Unigue Continuous Extension

FPN:wOMaXf FpsszAVGf
Masj, (4) = max f,(a) Aves, (1) = Eqmplfi(a)
Maxy, : (K(Q),dy) — R Avey, : (P(Q),dw) = R
T T
Space of nonempty compact subsets Space of Borel probability measures
with Hausdorff metric dy Intuition with Wasserstein metric dyy,
p:C—C

polynomial



Upgrade: Unigue Continuous Extension

FPN:wOMaXf FDSZZDOAVGJC
Maixy, (4) = ma fi(a) Aves, () = Epmlfi(@)]
Maxy, : (K(2),dy) — R Avey, : (P(Q?),dw) — R
T T
Space of nonempty compact subsets Space of Borel probability measures
with Hausdorff metric dy with Wasserstein metric dy,

(€2, d) compact = (K(2),dy) and (P(£2), dw ) compact



Stability of Extension

Theorem. Suppose Q C RY is compact. Then every PointNet and normalized-

DeepSet network with Lipschitz continuous activation functions is Lipschitz con-
tinuous on (KC(2),dy) and (P(2),dw) respectively.

| Fpn(A) — Fen(B)|| < Kr,,du (A, B)

| Fps(p) — Fps(V)|| < Kp,,dw (u,v)



Classical UAT — Topological UAT

Theorem. Let X be compact Hausdorff and o € C(R) not a polynomial. If
S C C(X) separates points and has a nonzero constant, then span(o o spanS)
is dense in C(X). If S is a linear subspace, then span(c o S) is dense in C'(X).




Topological UAT — UAT for Extension

Theorem. Let X be compact Hausdorff and o € C(R) not a polynomial. If
S C C(X) separates points and has a nonzero constant, then span(o o spanS)
is dense in C(X). If S is a linear subspace, then span(c o S) is dense in C'(X).

Letting Spy = {Maxs | f € N7} and Sps = {Aves | f € N7} works!

This yields a UAT for generalized PointNet and DeepSets on KC(£2) and P(£2).




UAT for Extension — Point Cloud UAT

Theorem. Let X be compact Hausdorff and o € C(R) not a polynomial. If
S C C(X) separates points and has a nonzero constant, then span(o o spanS)
is dense in C(X). If S is a linear subspace, then span(c o S) is dense in C'(X).

Letting Spy = {Maxs | f € N7} and Sps = {Aves | f € N7} works!

This yields a UAT for generalized PointNet and DeepSets on KC(£2) and P(£2).

Theorem.

span (o o span Spy)

span (o o Spg)

Restricting to Fin(2)

Uniform Closure >

UnifCont(Fin(2), dg)

UnifCont(Fin(2), dw)




The Overlap and Limitations

d g-continuous dy -continuous
on Fin(Q2) on Fin(Q2)

Uniformly Uniformly
d p-continuous dw -continuous
on Fin($2) on Fin(2)

PointNet

DeepSets
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The Overlap and Limitations

d g-continuous dy -continuous
on Fin(Q2) on Fin(Q2)

=}

Only

Uniformly Uniformly
d p-continuous Const.an t dw -continuous
on Fin(Q) Functions on Fin(Q)

PointNet DeepSets
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The Overlap and Limitations
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s the Problem at Infinity?

< k points



s the Problem at Infinity?
..Not Quite

< k points



s the Problem at Infinity?
..Not Quite

PointNet still can’t learn center-of-
mass even with fixed cloud size.
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< k points



Center-of-Mass, PointNet, & Fixed Size Sets

o -

Two dy-continuous paths with same limit...
...But different limiting centers.




Error Lower Bound for aver

Theorem. Let 2 C R™ be the unit ball, k& > 3, and f : & — R™ continuous.
Then for any distinct p,q € Q and 0 < 7 < 1 there exists a k-point set A with
p,q € ACQ so that

[Fen(4) - aves(A)] > (1= ) (532 ) 170) - (@

for any PointNet-type Fpy, regardless of depth/width/training/etc. Thus,

k—2 ,
| F'pn — aver || oo (pink(0)) = (7) Diam(f(£2))

Moreover, we can construct such
geometric “adversarial” examples



Test of Error Lower Bound (Center-of-Mass)
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Summary

= PointNet & normalized-DeepSets uniquely continuously extend to K (£2) and P ()
respectively.

= PointNet & normalized-DeepSets can uniformly approximate the uniformly
continuous functions on Fin()) w.r.t. dy and dy;, resp. They cannot uniformly

approximate anything else.
= PointNet & normalized-DeepSets are Lipschitz if activations are Lipschitz

= Constants are only functions mutually approximable by PointNet and DeepSets on
Fin(Q).

= PointNet cannot uniformly approximate averages of continuous functions (even for
fixed cloud size) and geometric adversarial examples are abundant and easily
constructed.
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