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Facts and Implications

* GNSS Vulnerabilities

* Multipath, partial or complete obscuration
* Dynamics, platforms, and environments
« Jamming and non-deliberate interferences

* Navigation with Signals of Opportunity

* Abundant and free to use
 Available with geometry and frequency diversities
* More powerful than GPS

GNSS - Global Navigation Satellite Systems
GPS - Global Positioning System
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Premises and Boundary Conditions

* Focus on Multisensory Hybridization
* Ad-Hoc vs. No Infrastructures
 Platform Dynamics
« Sensor Integration

* Focus on LEO-based PNT

« Opportunistic navigation with LEO satellite signals

« Cost of observations; e.g., Doppler and Doppler rates
 Provision observation policy given prediction accuracy level
« Tradeoff measurement strategies and on-line computations

PNT — Positioning, Navigation, and Timing
LEO — Low Earth Orbit
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Navigation with LEO Satellite Signals of Opportunity
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Pass Prediction — Satellites Visible at Elevation Angles Between 8° and 90°
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Multi-Constellation Receiver Architecture

RF RF IF Amplifier
Filter ~Amplifier Mixer & Filter

Doppler
Estimator

u — uth - LEO Constellation
L, — Number of Visible Satellites

¢ — Speed of Light

R, — Distance Between Satellite & Rx

M,, — M-ary Shift Keying Modulation Index
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Received Baseband Signals
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Estimation of Doppler and Doppler Rate
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Pseudorange Rate Measurements

ra

k
z, (k)=cfle°pp1“( ); I =1,...,L
' ](c,u +fIF,lu

* Re-indexed and Concatenating Notation

L

z,(k)={z, ()} " 5 j2u=1..,U0

« Measurement Model

+cA5tj+vj(k); j=1...,U

rsx — Receiver Position

r; — 3-D Position of Visible Satellites

r; — 3-D Velocity of Visible Satellites

Agtj — Differential Rx & Satellite Clock Drifts
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Simplified View of Sensor Structure
Measurement White Noisew, (k)
Sensor Constraints Py /ZL . 0
1 U Z
z,(k)=y,(k)+w,(k)=H,(k)x(k)+w, (k) Sensor 1 Eﬁfﬁséigzzém

Measurement White Noise, (k)

where )\
(k) . (8)

\ 4

yj(k):Hj(k)x(k); j=1....M H, (k) »(2)

Navigation

State Sen.sor 2

Measurement White Noises

Measurement White Noisey,, (k)

E{w, (k)} =0 e /L

v

\ 4
S

E{w, (k)w! (1)} =w, (k)& (k1) v (K) "D

J

Sensor M
Partial Observable and Noisy Sensor Data

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

v

z, (k)

Data Signal
From Sensor 2

Zu (k)
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Sensor Selection

Sensor Selection n) (k) v (K)
v (k) J\
o()=| (k) 2 (K) +(x) )\
v, (K) 2 (k) @ (2 >
where _ “
24~ 0 (8) ()
0<v,(k)<1 ~

Selected Sensor Observations
2(k)=v, (k) z, (k) +v, (k) z, (k) +---+v,, (k) z, (k)

Resources or Instruments Required to Process Sensor Observations
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Cost of Observations

| _ Q) e(r) ¢, (k)
« Per-Unit-of-Time Cost /L
M Vl(k) :@
C.(1)=3e, (), (1 | 1
” Vz(k) =k></ g
where
0<c, (k); j=1L...M v, (k) =é/
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Prediction Requirements

« State Space Model for Receiver Positions / Satellite & Receiver Clock Drifts

x(k+1) = F(k)x(k)+G(k)w(k);  x(0)=x,

where {w(x)} IS white in the strict sense

E{w(k)} =0
cov(w(k),w(l))=W (k)5 (k,I)

&—

. Unit

 Common Gauss-Markov w(k) —— G (k)
Delay

Navigation Process

—W
il
=

£ (k) =D (k,0)x, + 3 ® (k1 +1)G (1) w(1)
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Prediction Requirements

Diverse Measurements Carried Out
[0, V]

Predicting Important States; e.g., Receiver Positions, LEO satellite
& Receiver Clock Drifts

y(k)=D(k)x(k) (k) ———» (D(Np,k) :@ =D(Np)
at k=n,,N,>N
Prediction Interval Nf:lCID(Np,Hl)G(l)w(l)
N,~N20 -
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Prediction Requirements

« Denote Estimates of y(v,) by 3(v,)

* Accuracy of Prediction Depending on

- A (N |k) A
J<NP)ZE{|:y(Np)_)A;(Np):| [y(Np)_JA’(Np)]} (fzrfwk:almanFi|ter) CD(NP’k) C D(NP) - y"(N”)
Precteten Eotimate
. of iven
» Structure of Predictor — me;(dfé%iits !
Y o(N,+)G(nwrn| T
1=k

The Smaller ](Np) The More Accurate The Prediction
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Statement of Optimization Problem

Given the Integrated Receiver / Satellite & Receiver Clock Drift System

w(k)

x(k+1)=F(k)x(k)+G(k)w(k); x(0)=x, J [ o
Focusing on Premise Variables s | Dk)
® Unit I
() =D(k)x(k) R C% o | O
. F (k)
Leveraging Doppler Measurements
. @‘—'Hl(k)
z, (k) =H, (k)x(k)+wj (k); j=1....M . i
2 + Cor H, (k)
Optimizing Observation Policy 'J? T 5
X )e H, (k)
v (K)o, (K)seovy (K); ke[0,N] iy 1,,‘(,,{) 1 Fromotine

Computation
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Statement of Optimization Problem “T | o
« Optimal Observation Policy Subject to G(k) l D(k)
=) S Unit O «
ivi(k):l —:Z Kalfwifzaain = T(O) .
O_S v, (k)<1 F (k) |

which leads to £{y(N,)-#(N,)} =0 fork [0, N] |
and the multi-objective utility %O H, (k)

+

JE2aC(v)+(1-a)J(N,); 0<a<l

p

o H, (k)

IS minimized. v (8) w(®  w(¥) From Offiine

Computation

Tradeoffs Between Total Observation Cost and Mean-Square Error
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State Estimation

Let v(x). ke[0,N] denote a fixed observation policy during time interval [0.V]

It follows the least mean-square error estimate of the common process

X (k)=%,(k|k)2E{x(k)|Z,}
where z, ={z(0),z(1),....z(k)}

Similarly, one-step predictor is given by
% (k)=%, (k|k-1)2 E{x(k)|Z,_ |
Respective estimation error covariance become
P (k)= P (k1 k)2 E{[x(k)- % (k ][x -5 (0] 12,
B (K)=P (kI k-1) 2 E {[x () [x(0)= (0)] 12,
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State Estimation

* Time-Update Step:
X (k+1)=3% (k+11k) £ E{x(k+1)| Z,} = F (k)X (k)

P (k+1)=P (k+1| k)éE{[x(kﬂ)—fc;(k+1)][x(k+1)—)e;(k+1)f} = F (k)P (k)F" (k)+G (k)W (k)G (k)

« Kalman Gain
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State Prediction

& (N,)=0(N, V)& (V) + 3 &(N,.1+1)G (1) w(l)

p

Where q)(k’l):{F(k_l)F(k_z)”‘F(Z); k>1>0
* |Important Parameter Prediction

 |tleads to
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Reformulation of the Optimization Problem

-1
M

P (6) = (6)- (030 00 8) S50, )1, 002 (0 50 (612 4) 32 (00, (06) | S0 011,417 (0

i=1 [=1 i=1
subject to
{i", (k)=1; forallke[0,N]

0<v,(k)<1; for allke[O,N]/
* Find the optimal observation policy
v; (k)
such that the cost functional, with ~ fixed,

J=aC(v)+(1-a)Tr{D(N,)®(N,,N)P (N)®" (N,,N)D"(N,)};  0<a<l
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Summary

» Conducting work of paradigm shift in alternative PNT

» Opportunistic navigation with LEO satellite signals

 Cost of observations; e.g., Doppler and Doppler rates

* Provision observation policy given prediction accuracy level
 Tradeoff measurement strategies and on-line computations

 Future Work

* Model-based Assisting Deep Q Learning
 Single Satellite Geolocation
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