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Introduction: End-to-end Communication 
Systems 

Message Transmitter Channel Receiver Message
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Introduction: Autoencoders

• Best practices in training communications autoencoders are not 
finalized
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Objective

Improve modulation and coding solutions 
produced by deep neural networks

ØConstraining power through normalization
ØEnhancing training configurations using non-

additive white Gaussian noise solutions
ØImplementing gray-coding schemes for 

optimizing bit-vector placements 
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Important Metrics to Consider 

• Symbol and Bit Error Rates 
(SER/BER)

• Number of symbols/bits misclassified 
versus total transmitted

• Constellation Figure of Merit (CFM)
• Euclidean distance between closest 

symbols 
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Power 
Constraint 

through 
Normalization
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Importance of Normalization Layer 
• Normalizing the output of the 

transmitter
• Acts as an output energy constraint

• Encourage optimization of the 
available symbol space

• Two types of constraints:
• Soft constraints, where the average 

power of total transmitter symbols must 
be below a threshold

• Hard constraints, where all transmitted 
symbols must be below a threshold 
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Types of Normalization Layers 
Name Constraint 

Average Power

Max

Linear

Saleh 

Constrained Batch 
(CBN)
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Normalization 
Results

1. Average Norm
𝔼 𝑥, ≤ 1∀𝑖

2. Max Norm
𝑥, ≤ 1 ∀𝑖

3. Linear Norm 
𝑥,

𝑎𝑟𝑔𝑚𝑎𝑥 𝑥,
∀𝑖

4. Saleh Norm
𝑤 =

𝛼
1 + 𝛽 ∗ 𝑥, -

⇒ 𝑤 ∗ 𝑥,

1 2

3 4
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5. Constrained Batch Normalization

• 16-APSK-like SER performance as a function of Eb/No formation, with four 
and five inner points formations
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Constrained Batch 
Normalization

• Optimizes the use of internal unit 
circle space to achieve higher CFM 
values 
• Solutions resemble circle-packing 

theory
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Normalization Summary

• CBN outperforms the other hard constraint layers, navigating to lower 
SER and higher CFM values

Eb/No CFM SER [dB]

Max 0.039 -6.99

Saleh 0.053 -6.55

Linear 0.060 -6.57

CBN 0.097 -8.59
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Average CFM and SER values over 100 
autoencoder trainings 



Sand Noise as a 
Training 

Enhancement
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Sand Noise as a Training Enhancement

• Suggested by researchers at MIT for decision boundaries to “train harder”
• Sampled transmitter output with a sample drawn from a random 2-D distribution  

Zheng, L., “Using Neural Networks in Communications Problems – Theory and Examples,” Globecom Keynote, 
December 10, 2019. (unpublished)
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Sand Interjection
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Results/Conclusions
• As a standalone layer
• As a noise enhancer

• A 60% reduction in average SER value 
across 10 trials for both 5% and 10% 
sand cases was observed, with a 
better preforming constellation 
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One-Hot versus 
Bit-Vector 
Encoding
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One-Hot versus Bit-Vector Encoding

• Introduced a custom loss 
function 

• Exponentially increase loss per bit 
flip

• Encourage autoencoder to 
strategically place bit vectors to 
minimize bit error
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Results

• A “Splitting Effect” was achieved over the course of training
• Moves towards the idea of gray-coding solutions
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Conclusions

• Constrained batch normalization outperformed other hard 
constraining methods through optimization of the latent space
• Sand interjection did not improve constellation formation for greater 

modulation orders
• A splitting effect indicated error-reducing bit vector placements in 

latent space 
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