

Optimizing Space Communications using Deep Learning

Brianna I. Robertson (Presenter), Aaron Smith June 21st, 2021 NASA Glenn Research Center

Glenn Research Center

Introduction: End-to-end Communication Systems

Introduction: Autoencoders

 Best practices in training communications autoencoders are not finalized

Objective

Improve modulation and coding solutions produced by deep neural networks

Constraining power through normalization

Enhancing training configurations using nonadditive white Gaussian noise solutions

Implementing gray-coding schemes for optimizing bit-vector placements

Important Metrics to Consider

- Symbol and Bit Error Rates (SER/BER)
 - Number of symbols/bits misclassified versus total transmitted
- Constellation Figure of Merit (CFM)
 - Euclidean distance between closest symbols

Power Constraint through Normalization

CCAA Workshop 2021

Importance of Normalization Layer

- Normalizing the output of the transmitter
 - Acts as an output energy constraint
- Encourage optimization of the available symbol space

- Two types of constraints:
 - Soft constraints, where the average power of total transmitter symbols must be below a threshold
 - Hard constraints, where all transmitted symbols must be below a threshold

CCAA Workshop 2021

Types of Normalization Layers

Name	Constraint
Average Power	$\mathbb{E}[x_i] \le 1 \forall i$
Max	$ x_i \le 1 \; \forall i$
Linear	$\frac{ x_i }{argmax(x_i)} \forall i$
Saleh	$w = \frac{\alpha = 1, \beta = 2}{\alpha} \Rightarrow w * x_i$
Constrained Batch (CBN)	$ \begin{array}{l} \gamma, \beta \in Batch \ Normalization \ (BN) \\ x_{i,BN} = BN(x_i) \ \ \beta = 0 \ \& \max \gamma \le 0.9 \\ x_{i,BN} \le 1 \end{array} $

Normalization Results

- 1. Average Norm $\mathbb{E}[|x_i|] \leq 1 \forall i$
- 2. Max Norm $|x_i| \le 1 \ \forall i$

CCAA Workshop 2021

- 3. Linear Norm $\frac{|x_i|}{argmax(|x_i|)} \forall i$
- 4. Saleh Norm $w = \frac{\alpha}{1 + \beta * |x_i|^2} \Rightarrow w * x_i$

9

5. Constrained Batch Normalization

 16-APSK-like SER performance as a function of Eb/No formation, with four and five inner points formations

Constrained Batch Normalization

- Optimizes the use of internal unit circle space to achieve higher CFM values
- Solutions resemble circle-packing theory

Learning

Normalization Summary

Average CFM and SER values over 100 autoencoder trainings		
Eb/No	CFM	SER [dB]
Max	0.039	-6.99
Saleh	0.053	-6.55
Linear	0.060	-6.57
CBN	0.097	-8.59

• CBN outperforms the other hard constraint layers, navigating to lower SER and higher CFM values

Sand Noise as a Training Enhancement

CCAA Workshop 2021

Sand Noise as a Training Enhancement

- Suggested by researchers at MIT for decision boundaries to "train harder"
- Sampled transmitter output with a sample drawn from a random 2-D distribution

Zheng, L., "Using Neural Networks in Communications Problems – Theory and Examples," Globecom Keynote,

December 10, 2019. (unpublished)

Learning

Results/Conclusions

- As a standalone layer
- As a noise enhancer
 - A 60% reduction in average SER value across 10 trials for both 5% and 10% sand cases was observed, with a better preforming constellation

1.0

CCAA Workshop 2021

-1.0

-0.5

0.0

0.5

Optimizing Space Communications using Deep Learning

0.0

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

One-Hot versus Bit-Vector Encoding

CCAA Workshop 2021

One-Hot versus Bit-Vector Encoding

- Exponentially increase loss per bit flip
- Encourage autoencoder to strategically place bit vectors to minimize bit error

Results

- A "Splitting Effect" was achieved over the course of training
- Moves towards the idea of gray-coding solutions

Conclusions

- Constrained batch normalization outperformed other hard constraining methods through optimization of the latent space
- Sand interjection did not improve constellation formation for greater modulation orders
- A splitting effect indicated error-reducing bit vector placements in latent space

Acknowledgments

- Cognitive Signal Processing Branch at Glenn Research Center
- Lewis' Educational and Research Collaborative Internship Project (LERCIP) Program