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Materials Design for Ferroelectric Reflectarray Antenna
Coupled Microstrip Phase Shifter (CMPS)

Electronically Steerable Reflectarray Antenna

Miranda et al. J. Am. Ceram. Soc., 91 [6] 1864–1868 (2008)
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Sweet spot for 
optimal property

Potential Ferroelectric Compositions Investigated:
Ø SrTiO3
Ø BaxSr1-xTiO3
Ø (Pb,La)(Zr,Ti)O3
Ø PbSr TiO3
Ø



Microstructure/Domain Structure in Ferroelectrics

Macroscale 
device level
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Ø Grain boundaries
Ø Twin domains
Ø Free surfaces
Ø Domain walls
Ø Dislocations

Inhomogeneities Affecting 
Polarization Switching in 

Ferroelectrics



DEEP LEARNING

Self-driving Cars Smarter Healthcare Microstructure 
Optimization

Deep learning can quantitatively analyze patterns in image
Would need tens to hundreds of 1,000s of carefully labeled microstructures

Unlike most experiments, phase-field simulations can generate thousands of 
microstructures within weeks to months time 



Phase-field Simulations of Microstructures

Possible to simulate microstructure 
when multiple features coexist

Grain Growth
Krill and Chen, Acta. Mat. 2002

Dislocations
Domain St. in PTO thin films with interfacial dislocations. 

Li et. al. J. Appl. Phys. 2003  

Ferroelectric Domain Structure 

Choudhury and Chen, 2009
Journal cover J. Am. Ceram. Soc.
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Krill and Chen  Acta Mater. 50, 3057,2002
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Simulated domain structure of PbTiO3
ceramics with no applied electric field

180° domain wall

90° domain wall

Domain Structure in Polycrystalline PbTiO3

S. Choudhury, 
et. al Acta 

Mater. 2005



Effect of Grain Size on Domain Structure  in PbTiO3

S. Choudhury, et. al Acta Mater. 2007
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Cao and Randall  J Phys Chem Solids, 1996

TEM Measured Domain Size



Effect of Grain Size on Domain Structure  in PbTiO3
Tsurekaw

a
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Domain St. of PZT Ceramics



Effect of Grain Size on the Coercive Field in PbTiO3

Normalized Electric Field(E1
G/E0)
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0) Hysteresis loops of  PZT ceramics

Islam and Priya J Mater Sci., 2008

Grain Size 
627(nm) 111(nm)

Coercive 
Field

1.7 (kV/mm) 1.2 (kV/mm)

Phase-field Simulation Experimentally Measured



Phase Diagram of PZT
Jaffe et al. 1971

PHASE FIELD SIMULATION OF FERROELECTRIC CERAMICS
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Grain structure and 
grain orientation
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Figure 4.5. Schematic diagram of linear change in transition temperature across a grain
boundary.

as a result of processing conditions. For example, lower transitions temperatures simulate

the presence of a secondary paraelectric phase that can occur at the grain boundary. This

may lead to reduced or zero polarization at the grain boundary. It has been previously

shown that the presence of a non-ferroelectric grain boundary layer decreases the dielectric

properties in barium titanate ceramics[75]. In this study the grain boundary occurs over

a very finite distance of 2�x, where the transition temperature was changed in a linear

fashion as can be seen in Figure 4.5. The transition temperature at the grain boundary was

Transition Temperature at G.B

𝜑 = 𝜑! 𝜑 = 𝜑"

Grain 1 Grain 2

𝑇#$%& = 479°𝐶

𝑇'# = 25 − 479°𝐶Two processing parameters considered: 
(a) Transition temperature are the grain boundary
(b) Grain boundary orientation 



FLOWCHART OF THE DEEP LEARNING FRAMEWORK

†Grain growth code from C. Krill and L.Q. Chen Acta. Mat. 50 2002



MODEL
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Figure 4.4. Example of training microstructures and microstructures predicted by the network
with TGB = 10 ¶C.

Comparison of Microstructures (TGB =10°C)

Phase-field 
Simulated 

Microstructures

Machine 
Predicted 

Microstructures

∅ = 5° ∅ = 36° ∅ = 38° ∅ = 86°

Grain Boundary



• The orientation of each grain is defined by, 

• For each ∅ domain wall orientation is known

• Our script automatically detects domain wall

φ = 0°φ = 20°Quantification of Microstructure Prediction
Prediction of Domain Wall Orientation

∅

∅1 ∅2



• Average angles of same domain 
wall type within grain

• Average degree deviation from 
expected domain wall orientation in 
phase-field simulation:1.45°

• Average degree deviation (from 
expected domain wall orientation ) 
for neural net: 2.87°

• Average prediction within 1.5°
error

• Nearly all cases are within very 
good estimate of phase-field 
simulations

Error in Network Predicted and Phase-field simulated Domain Wall Orientation

Error (deg)                          
Co

un
t 



Root Mean Square Error (RMSE) in Predicted Coercive field
48

Figure 4.8. RMSE of di�erent machine learning techniques to predict the coercive
field. The orange figure is the predictor network presented in this work and takes only
microstructure as input. The blue methods were trained using the input processing
parameters.

at the grain boundaries[82]. Two important factors in determining coercive field, the

ferroelectric transition temperature at the grain boundary and the misorientation between

the two grains, have been taken into account to determine the final property through a

hysteresis loop in phase-field calculations. Phase-field calculations modeled the evolution

of the domains as an applied electric field was applied and reversed. Further information

about the hysteresis loops can be found in the supplemental information.

An independent predictor network was trained to predict the coercive field, given the

domain structure of the material. The predictor trained on 1972 domain structures in

a similar manner to the encoder-decoder model. Learning the coercive field from the

Processing →Microstructure  →Property (Coercive Field)

Network      SVM RBF   SVM Linear       KRR               GP               

RM
SE

The network prediction 
of coercive field 
performs better than 
those predicted by
traditional machine 
learning on the 
processing conditions 
alone.



Added an “attention” 
layer that weights 

importance of inputs

Prediction of Energy Contributions using Attention Layer

Encoder Decoder

Attention Layer Weight

Co
un

t

Electrostatic 
Energy

Network can provide 
fundamental insights into 
microstructure evolution

Elastic 
Energy

Network Predicted Brain Scan Observed  Brain Scan 

Comparison of regions affected by Alzheimer's 
disease using attention layer

Network Predicted
Brain Scan 

Observed 
Brain Scan 

Regions affected by Alzheimer's disease

B
aum

gartner, C
. F et al IEEE 

C
onference on C

om
puter Vision and 

Pattern Recognition (2018).



Comparison of the Microstructure Evolution as 0.2% Strain is Applied in the x Direction to 
an Initial (t = t0) Microstructure using a Encoder-LSTM-Generator network

Phase-field 
Simulations 

Network 
Prediction

𝒕 = 𝒕𝟏 𝒕 = 𝒕𝟒 𝒕 = 𝒕𝟕

x



¡ Galactic Cosmic Rays (GCR)
§ Protons
§ Particles (Helium)
§ Positrons
§ Neutron

¡ Solar Energetic Particles (SEP)
§ Solar Flares
§ Coronal Mass Ejection (CME) – solar winds
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Courtesy: Prof. You Qiang (University of Idaho)
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Irradiation Source

Remote Monitoring
Figure 2. (a) Relaxed structure of the Fe/Y2O3 interface from electronic 

structure calculations. The misfit dislocation is indicated by the dotted lines. 

The blue and the black arrows show the coherent and misfit region of the 

interface, respectively; (b) TEM micrographs of Fe-Fe3O4 core-shell 

structure (Jiang et al. Advanced Functional Materials, 24, 6210, 2014)

Interfacial 

Fe
Fe

Y2O3

(a) (b)

Figure 2. (a) Relaxed structure of the Fe/Y2O3 interface from electronic 

structure calculations. The misfit dislocation is indicated by the dotted lines. 

The blue and the black arrows show the coherent and misfit region of the 

interface, respectively; (b) TEM micrographs of Fe-Fe3O4 core-shell 

structure (Jiang et al. Advanced Functional Materials, 24, 6210, 2014)

Interfacial 

Fe
Fe

Y2O3

(a) (b)S. Choudhury Scientific Reports 2014 Support: NASA-Idaho EPSCoR Research Initiation Grant



CONCLUDING REMARKS
• Predictive deep learning model is designed for ferroelectric domain structures

• Predicted domains walls match will phase-field model results within 1.5°

• Able to quantify success in learning microstructural properties from phase-field 
simulations

• Can predict time dependent evolution of microstructures

Acknowledgement: This work was supported financially by a National Science Foundation Graduate 
Research Fellowship Program under Grant No. 1842399.  Part of the calculations were performed at 
the High Performance Computing Facility at the Idaho National Laboratory, which is supported by the 
Office of Nuclear Energy of the U.S. Department of Energy under Contract No. DE-AC07-05ID14517.



Comparison of Normalized Polarization Magnitude at Grain Boundary

Ferroelectric Transition Temperature at Grain Boundary                 
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Figure 4.5. Schematic diagram of linear change in transition temperature across a grain
boundary.

as a result of processing conditions. For example, lower transitions temperatures simulate

the presence of a secondary paraelectric phase that can occur at the grain boundary. This

may lead to reduced or zero polarization at the grain boundary. It has been previously

shown that the presence of a non-ferroelectric grain boundary layer decreases the dielectric

properties in barium titanate ceramics[75]. In this study the grain boundary occurs over

a very finite distance of 2�x, where the transition temperature was changed in a linear

fashion as can be seen in Figure 4.5. The transition temperature at the grain boundary was

Transition Temperature at G.B

! = !# ! = !$

Grain 1 Grain 2

%&'() = 479°.
%/& = 25 − 479°.



1) Generate samples with phase-field

l 1,000s of unique samples 
produced within 2 weeks

2) Use processing conditions to 
predict ferroelectric domain 
microstructure of PbTiO3

3) Use domains to predict coercive 
field property

METHOD

†Grain growth code from C. Krill and L.Q. Chen Acta. Mat. 50 2002

†
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Electric energy distribution Elastic energy distribution

Energetic Contributions toward Domain Formation

What is the role of individual energies toward of microstructure evolution?
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many materials, for example in Ba 2 NaNb 5 O 15 , where both are 
4-fold. [  23  ]  However one fi nds spectacular exceptions, such as the 
beautiful 12-fold domain wall vertex in thiourea, SC(NH 2 ) 2 . [  24  ]  
The order parameter in thiourea is two-dimensional. [  25  ]  There-
fore, this would seem to confl ict with Janovec’s theory. How-
ever, Janovec’s theory refers to group-theoretically equivalent 
domains, whereas this example in thiourea is actually a more 
complex pattern, made up of inequivalent domain walls of 
{130} and {110} planes. Therefore, the general nature of 
domain patterns, including four-fold quadrant closure domains 
(seen by Alexe in PZT,  [  26  ]  but rare in ferroelectrics), in-plane 
vertex domains, [  27  ]  and vortexdomains with out-of-plane sin-
gularities in polarization P, [  28–    30  ]  require subtle examination. 
In the present work, we categorize fi ve families of mesoscopic 
patterns in which stable (or long-lived metastable) confi gura-
tions can be produced or stabilized by electrostatic or mechan-
ical forces. Such mechanical forces may stem from substrate 
clamping and mutual forces that are induced by the grains 
during the crystallographic phase transition. Moreover, the 
idea that another kind of mechanical force, viz. surface tension, 
plays such a role in stabilizing thin-fi lm domains has been 
developed recently by Luk’yanchuk et al. [  31  ]  It is also useful to 
keep in mind that domain structures in fi lms, [  32  ,  33  ]  especially 
in polycrystalline materials, [  34  ]  are usually metastable. The 
implication is that slow relaxation of initial thermal stresses 
on cooling or mechanical stresses from further processing can 
cause domain walls to move or disappear (coalesce). This may 
also evolve bundles. 

 When undergoing the phase transition from cubic to 
tetragonal, the perovskite unit cell has three different orientations 
to which it can align its long axis, leading to three possible fer-
roelastic domain orientations. However, since the material is also 
ferroelectric, the polarization in each of these has two possible ori-
entations, following the six different faces of the tetragonal struc-
ture. We have identifi ed the following fi ve different structures into 
which the domains of neighboring grains are organized.  

 2.1. Long-Range Linear Organization   

 Figure 2  a demonstrates the ferroelastic domain distribu-
tion in neighboring grains. To allow for comparison of this 
image with the topography of the area (Figure  2 b) and the 
ferroelectric domain distribution in that area (Figure  2 c) they 

all were imaged simultaneously. It can be seen that many of the 
different bundles in this area are aligned to a general common 
direction, over a length scale of the order 1  µ m, as designated 
by the arrow in Figure  2 a.  

 Although the ferroelastic domains in Figure  2 a do organize 
towards a common alignment, the ferroelectric domains in 
that area (Figure  2 c) do not indicate a correlation between the 
neighboring grains. Thus, one can deduce that this structure 
is formed from mechanical, rather than electrical constraints. 
Moreover, since the domains are not perfectly aligned, but 
rather share a general common direction, one can assume that 
such a structure is associated with dominance of the substrate 
clamping. That is, during the cubic to tetragonal phase transi-
tion, the substrate imposes mechanical constraints that cause 
this common alignment of the striped domains. The corruga-
tion angle perpendicular to the stripes, seen in Equation 1, is 
almost constant in this case. That is, the plane below this area 
shares a constant slope. To understand this behavior better, 
Figure  2 d and e illustrate this structure schematically. It should 
be mentioned that the orientation of ferroelastic domains is 
restricted by various geometrical parameters such as: (a) lat-
tice mismatch between the fi lm and the substrate; (b) grain 
boundaries and neighboring grains; and (c) allowed axes in the 
crystallographic phase of the material. [  29  ]  As a result, the elastic 
domains can align only in a discrete number of possible ori-
entations. Therefore, it is not surprising that the alignment of 
the bundles within the neighboring grains is towards only a 
general common orientation. In other words, observation of the 
stripes allows us to determine what is happening at the fi lm/
substrate interface.   

 2.2. Short-Range Linear Organization 

 Neighboring grains exert mechanical constraints on each other 
at a much smaller scale than the substrate clamping does. 
Therefore, it is expected that the orientation of the bundles 
within domains of neighboring grains that organize together due 
to these constraints will be aligned at a closer orientation than 
the bundles in Figure  2 . Indeed, we have observed such short-
range organization of the domains, as demonstrated in  Figure  3  , 
where the range is of the order 300–400 nm. At the short scale, 
the matching between neighboring grains is better, allowing a 
closer orientation of the domains. Furthermore, at this scale, the 

      Figure  2 .     Long-range linear organization. a) Amplitude E-PFM reveals 
a common alignment of the elastic domains, designated by an arrow. 
b) Topography image shows that this area contains several grains. 
c) Phase E-PFM image demonstrates the ferroelectric domain distribu-
tion in the same area. d) Schematic of a linear micro-domain.  

      Figure  3 .     Short-range linear organization. a) Amplitude E-PFM reveals a 
common alignment of the elastic domains in adjacent grains (designated 
by an arrow). b) Topography image shows of that area. c) Phase E-PFM 
image demonstrates the ferroelectric domain distribution in the same 
area.  

Ivry et. al. Adv. Func. 
Mater. (2014)

Formation of ferroelectric 
domain structure is governed 
by a combination of short-
range and long-range 
interaction
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Flowchart of the Encoder-LSTM-Generator network


