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Context

• Dynamic Spectrum Access
• Anticipated proliferation and diversification of aircraft
• Limited, static allocation of spectrum
• NASA Glenn Research Center initiative for machine-learning solutions
• Limitation of available, relevant data

• Predicted Trajectory as Data Input
• Sector Identification
• Channel estimation
• Communication Demand Prediction
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Formulation
• Challenge: Predicting 4D Deviations from Flight Plan

• Longitude, Latitude, Altitude, Time
• Varied by Convective Weather
• Sequence-to-Sequence v. Time-Series Forecast

• Data Items
• Flight Data: NASA Sherlock Data Warehouse

• Flight Plans: Interpolated from navigation aids
• Flight Trajectories: Interpolated from broadcast data

• Weather Products: NASA Sherlock Data Warehouse, NOAA Portals
• Varied spatial, temporal resolution
• Continental Coverage: Parse into feature cubes along each flight plan

• Collection: 379 Flights, 1/10/2019-1/24/2019, Los Angeles – New 
York

• Hybrid-Recurrent Structure
• Sequence-to-Sequence paradigm

Hybrid-Recurrent General Structure

Collection of a Single Feature Cube
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Weather Data Selection: Setup

• Variables of Interest
• CIWS: Vertically Integrated Liquid
• HRRR: Wind Speed (U/V), Temperature

• Correlation Analysis to determine 
combinations of 2 products
• CNN-LSTM network, 1 recurrent layer
• Comparison against Echo Top as Baseline

Weather 
Database

Used 
in

Relevant
Variables

Update 
Period

Resolution

Corridor 
Integrated 
Weather 
Service 
(CIWS)

[5] Vertically Integrated Liquid 
(VIL)

Echo Top

Current
2.5 Min

Forecast
5 Min

1.85 km 
(1 nmi)

North 
American 
Mesoscale 

(NAM)

[6] Humidity

Wind 
Speed (U)

Temperature

Wind Speed 
(V)

Air Pressure

6 Hours 12 km
(6.48 nmi)

Rapid 
Refresh 
(RAP)

High 
Resolution 

Rapid 
Refresh 
(HRRR)

[2] Humidity

Wind 
Speed (U)

Temperature

Wind Speed 
(V)

Air Pressure

1 Hour RAP
13 km

(7.01 nmi)

HRRR
3 km

(1.61 nmi)

Overview of Weather Products in Existing Literature
Highlighted Products/Databases Used in Research
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Weather Data Selection: Results
• Limitations

• Cropped, transformed data 
between sources

• No padding/shifting, limited 
coefficients

• Trends
• Low correlation of all products
• Sparsity of Echo Top and VIL

• Products for training
• Echo Top + VIL
• Echo Top + Temperature
• VIL + Temperature
• Temperature + V Wind

Normalized (0,1) Histograms 
Each histogram ranges (0, 0.5) on the x-axis of Cross-Correlation Coefficients
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Weather Data: Results & Closing Thoughts

• Trends
• Echo Top as nominal, singular 

product
• V Wind provided best vertical 

error
• No tested combination of 

products significantly improved 
accuracy
• Notable degradation in VIL

Product(s) Horizontal Error

(µ/σ in nmi)

Vertical Error

(µ/σ in ft)

Improvement over 
Echo Top

(µHoriz/σHoriz as 
percent)

Improvement over 
Echo Top

(µVert/σVert as 
percent)

Echo Top 50.017
48.854

1160.07
1420.26

0
0

0
0

VIL 55.171
67.276

1230.23
1514.95

-10.304
-37.708

-6.048
-6.667

TMP 52.983
60.901

1130.72
1399.41

-5.931
-24.659

2.530
1.468

U Wind
(E/W)

50.560
54.588

1128.17
1420.57

-1.085
-11.738

2.749
-0.022

V Wind
(N/S)

50.167
51.376

1097.16
1390.80

-0.299
-5.164

5.422
2.074

ET + VIL 50.670
57.596

1118.72
1365.45

-1.305
-17.895

3.564
3.859

ET + TMP 50.194
51.937

1156.50
1424.41

-0.354
-6.312

0.307
-0.292

VIL + TMP 52.520
65.513

1248.81
1558.70

-5.005
-34.101

-7.650
-9.748

TMP + V Wind 49.578
51.764

1128.25
1430.29

0.877
-5.957

2.743
-0.707

Prediction Results of Selected Weather Product
Reported based on Trajectory-wise Errors
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Model Design: Setup

• Architecture Changes
• Weather Extraction Mechanism: 

CNN v. Self-Attention v. hybrid
• Recurrent Mechanism: 

LSTM v. GRU v. IndRNN
• Recurrent Depth

• Trained on Echo Top feature 
cubes
• Comparison against CNN-LSTM 

(1 layer) as baseline

Parameter Description Parameter Value

Convolution Kernel Sizes [6x6, 3x3, 1x1]
Convolution Stride Lengths [2, 2, 1]

Convolution Filter Sizes [1, 2, 4]
Attention Output Dimensions [128, 36, 36]

Dense Layer Sizes LSTM, GRU: [16, 3]
IndRNN: [16, 97]

Recurrent Input Size 6
Recurrent Hidden Layers 100 Cells

Recurrent Depth GRU, LSTM: 1 or 2 Layers
IndRNN: 2 or 3 Layers

Optimizer Learning Rate 2x10-4

Training Duration 500 Epochs

Default Parameters of Hybrid-Recurrent Models
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Model Design: Results & Closing Thoughts

• Trends
• Poor Performance of IndRNN
• Notable improvement in self-

attention models
• Unclear: selection between 

LSTM and GRU, 1 and 2 
recurrent layers

Model Horizontal Error

(μ/σ in nmi)

Vertical Error

(μ/σ in ft)

Improvement over 
Flight Plan 

(μHoriz/μVert as percent)

Improvement over 
CNN-LSTM1lay 

(μHoriz/μVert as percent)

CNN – LSTM1lay 63.558
26.891

1160.27
1500.83

39.592
64.013

0
0

CNN-LSTM2lay 60.9995
29.2265

1167.39
151.46

42.0241
63.7919

4.0260
-0.6135

CNN-GRU1lay 59.895
28.056

1120.04
1399.75

43.074
65.261

5.763
3.468

CNN-GRU2lay 47.2278
22.9868

1156.16
1332.40

55.1131
64.1404

25.6938
0.3548

CNN-IndRNN2lay 119.131
63.130

1219.99
1682.68

-13.226
62.161

-87.436
-5.146

CNN-IndRNN3lay 122.6245
61.8804

1219.86
1682.68

-16.5463
62.1645

-92.9320
-5.1355

CNN+SA-LSTM1lay 59.325
29.585

1178.57
1546.38

43.615
63.445

6.660
-1.576

SA-LSTM1lay 40.945
23.797

804.73
1054.89

61.084
75.041

35.579
30.644

Prediction Results of Trained Hybrid-Recurrent Models
Reported based on Trajectory-wise Errors
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Conclusions & Looking Forward

• 4D Trajectory prediction may serve as a multifaceted data product for 
dynamic spectrum allocation
• Research assesses the usefulness of available data and deep learning 

mechanisms for prediction.
• Echo Top remains recommended as a holistic, singular product. No combinations of 

data can be recommended at this time.
• The incorporation of self-attention has greatly improved model accuracy.

• Continued research
• Additional weather products: air pressure
• Model generalization: account for seasonality of data
• Model tuning: architecture and optimizer hyperparameters
• Data generalization: selection of additional flights with varied headings, durations, 

coverages of the continental United States.
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Questions?

Thank you!
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