

Flight Trajectory Prediction Based on Hybrid-Recurrent Networks

Cognitive Communications for Aeronautical Applications (CCAA) Workshop 2021 Cleveland, OH June 21-23, 2021

Nathan Schimpf, Zhe Wang, Hongxiang Li, *University of Louisville, Louisville, KY* Eric J. Knoblock, Rafael D. Apaza, *NASA Glenn Research Center, Cleveland, OH*

Outline

- Context
- Formulation
- Weather Data Selection
- Model Design Improvements
- Conclusions

Context

OF

- Dynamic Spectrum Access
 - Anticipated proliferation and diversification of aircraft
 - Limited, static allocation of spectrum
 - NASA Glenn Research Center initiative for machine-learning solutions
 - Limitation of available, relevant data
- Predicted Trajectory as Data Input
 - Sector Identification
 - Channel estimation
 - Communication Demand Prediction

Formulation

- Challenge: Predicting 4D Deviations from Flight Plan
 - Longitude, Latitude, Altitude, Time
 - Varied by Convective Weather
 - Sequence-to-Sequence v. Time-Series Forecast
- Data Items
 - Flight Data: NASA Sherlock Data Warehouse
 - Flight Plans: Interpolated from navigation aids
 - Flight Trajectories: Interpolated from broadcast data
 - Weather Products: NASA Sherlock Data Warehouse, NOAA Portals
 - Varied spatial, temporal resolution
 - Continental Coverage: Parse into feature cubes along each flight plan
 - Collection: 379 Flights, 1/10/2019-1/24/2019, Los Angeles New York
- Hybrid-Recurrent Structure
 - Sequence-to-Sequence paradigm

Weather Data Selection: Setup

Variables of Interest

OF

- CIWS: Vertically Integrated Liquid
- HRRR: Wind Speed (U/V), Temperature
- Correlation Analysis to determine combinations of 2 products
- CNN-LSTM network, 1 recurrent layer
- Comparison against Echo Top as Baseline

Overview of Weather Products in Existing Literature Highlighted Products/Databases Used in Research

Weather Database	Used in	Relevant Variables		Update Period	Resolution
Corridor Integrated Weather Service (CIWS)	[5]	Vertically Integrated Liquid (VIL) Echo Top		Current 2.5 Min Forecast 5 Min	1.85 km (1 nmi)
North American Mesoscale (NAM)	[6]	Humidity Wind Speed (U)	Temperature Wind Speed (V) Air Pressure	6 Hours	12 km (6.48 nmi)
Rapid Refresh (RAP) High Resolution Rapid Refresh (HRRR)	[2]	Humidity <mark>Wind</mark> Speed (U)	Temperature Wind Speed (V) Air Pressure	1 Hour	RAP 13 km (7.01 nmi) HRRR 3 km (1.61 nmi)

Weather Data Selection: Results

• Limitations

○₹

- Cropped, transformed data between sources
- No padding/shifting, limited coefficients
- Trends
 - Low correlation of all products
 - Sparsity of Echo Top and VIL
- Products for training
 - Echo Top + VIL
 - Echo Top + Temperature
 - VIL + Temperature
 - Temperature + V Wind

Normalized (0,1) Histograms Each histogram ranges (0, 0.5) on the x-axis of Cross-Correlation Coefficients

Weather Data: Results & Closing Thoughts

• Trends

OF

- Echo Top as nominal, singular product
- V Wind provided best vertical error
- No tested combination of products significantly improved accuracy
- Notable degradation in VIL

Prediction Results of Selected Weather Product Reported based on Trajectory-wise Errors

Product(s)	Horizontal Error	Vertical Error	Improvement over Echo Top	Improvement over Echo Top
	(μ/σ in nmi)	(μ/σ in ft)	(μ _{Horiz} /σ _{Horiz} as percent)	(μ _{Vert} /σ _{Vert} as percent)
Echo Top	50.017 48.854	1160.07 1420.26	0 0	0 0
VIL	55.171	1230.23	-10.304	-6.048
	67.276	1514.95	-37.708	-6.667
ТМР	52.983	1130.72	-5.931	2.530
	60.901	1399.41	-24.659	1.468
U Wind	50.560	1128.17	-1.085	2.749
(E/W)	54.588	1420.57	-11.738	-0.022
V Wind	50.167	1097.16	-0.299	5.422
(N/S)	51.376	1390.80	-5.164	2.074
ET + VIL	50.670	1118.72	-1.305	3.564
	57.596	1365.45	-17.895	3.859
ET + TMP	50.194	1156.50	-0.354	0.307
	51.937	1424.41	-6.312	-0.292
VIL + TMP	52.520	1248.81	-5.005	-7.650
	65.513	1558.70	-34.101	-9.748
TMP + V Wind	49.578	1128.25	0.877	2.743
	51.764	1430.29	-5.957	-0.707

Model Design: Setup

• Architecture Changes

- Weather Extraction Mechanism: CNN v. Self-Attention v. hybrid
- Recurrent Mechanism: LSTM v. GRU v. IndRNN
- Recurrent Depth
- Trained on Echo Top feature cubes
- Comparison against CNN-LSTM (1 layer) as baseline

Default Parameters of Hybrid-Recurrent Models

Parameter Description	Parameter Value	
Convolution Kernel Sizes	[6x6, 3x3, 1x1]	
Convolution Stride Lengths	[2, 2, 1]	
Convolution Filter Sizes	[1, 2, 4]	
Attention Output Dimensions	[128, 36, 36]	
Dense Layer Sizes	LSTM, GRU: [16, 3] IndRNN: [16, 97]	
Recurrent Input Size	6	
Recurrent Hidden Layers	100 Cells	
Recurrent Depth	GRU, LSTM: 1 or 2 Layers IndRNN: 2 or 3 Layers	
Optimizer Learning Rate	2x10 ⁻⁴	
Training Duration	500 Epochs	

Model Design: Results & Closing Thoughts

• Trends

OF

- Poor Performance of IndRNN
- Notable improvement in selfattention models
- Unclear: selection between LSTM and GRU, 1 and 2 recurrent layers

Prediction Results of Trained Hybrid-Recurrent Models Reported based on Trajectory-wise Errors

Model	Horizontal Error	Vertical Error	Improvement over Flight Plan	Improvement over CNN-LSTM1lay
	(µ/0 in inii)	(µ/0 III It)	(µHoriz/µVert as percent)	(µHoriz/µVert as percent)
CNN – LSTM1lay	63.558	1160.27	39.592	0
	26.891	1500.83	64.013	0
CNN-LSTM2lay	60.9995	1167.39	42.0241	4.0260
	29.2265	151.46	63.7919	-0.6135
CNN-GRU1lay	59.895	1120.04	43.074	5.763
	28.056	1399.75	65.261	3.468
CNN-GRU2lay	47.2278	1156.16	55.1131	25.6938
	22.9868	1332.40	64.1404	0.3548
CNN-IndRNN2lay	119.131	1219.99	-13.226	-87.436
	63.130	1682.68	62.161	-5.146
CNN-IndRNN3lay	122.6245	1219.86	-16.5463	-92.9320
	61.8804	1682.68	62.1645	-5.1355
CNN+SA-LSTM1lay	59.325	1178.57	43.615	6.660
	29.585	1546.38	63.445	-1.576
SA-LSTM1lay	40.945	804.73	61.084	35.579
	23.797	1054.89	75.041	30.644

Conclusions & Looking Forward

- 4D Trajectory prediction may serve as a multifaceted data product for dynamic spectrum allocation
- Research assesses the usefulness of available data and deep learning mechanisms for prediction.
 - Echo Top remains recommended as a holistic, singular product. No combinations of data can be recommended at this time.
 - The incorporation of self-attention has greatly improved model accuracy.
- Continued research

OF

- Additional weather products: air pressure
- Model generalization: account for seasonality of data
- Model tuning: architecture and optimizer hyperparameters
- Data generalization: selection of additional flights with varied headings, durations, coverages of the continental United States.

Questions?

Thank you!

Collaboration of the University of Louisville and National Aeronautics and Space Administration