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Motivation
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While manual resource allocation techniques could be used for previous communications satellites, the new
generation requires automatic and optimized processes to dynamically allocate resources in real-time
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The beam placement problem

Problem definition

The beam placement problem consists of dividing a set of users into a collection of sub-sets that satisfies the
spatiotemporal constraints, while minimizing the usage of resources.

Current challenges:

= Enumerating all options has
an exponential cost

= Current techniques use
traditional methods (k-means,
linearizations, etc) for low
number of beams (<500)

= Methods for higher number of
beams (>500) rely on heuristic
approaches
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The beam placement problem

Dual Objective

N

Maximize number of beams Minimize frequency consumed
= |Less pointing loss = Less frequency usage
= |Less loaded beams

= This formulation has two seemingly opposite objectives, but we want to obtain the set of solutions with
the best trade-offs

=  This formulation is NP-hard

H .
Motivati Beam Genetic Results Conclusion
I I otivation Placement Algorithm Y 4
®



The Genetic Algorithm approach

Genetic Algorithms (GA) are a subclass of Evolutionary Algorithms (EA), which are based on population
evolution to obtain iteratively better and better solutions [1]

Crossing

Individual definition
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[1] M. Mitchell, An introduction to genetic algorithms. The MIT Press, 1996.
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The Genetic Algorithm approach

Genetic Algorithms (GA) are a subclass of Evolutionary Algorithms (EA), which are based on population
evolution to obtain iteratively better and better solutions [1]

Mutation

= (Create Beam = Destroy Beam
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[1] M. Mitchell, An introduction to genetic algorithms. The MIT Press, 1996.
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Results: Convergence

= Constellation: O3b mPower (10 MEO satellites)
Users: Tens of thousands of users across the world

=
o
n

9
© 0.600
(V2]
> i ) . g . .
% 0.9 0.575 = Results significantly improve going from 5 to 10
=] - 0.550 generations
() . . .
£ 084 L .55 = Results improve slightly when going from 10 to 50
N 0.500 = Results almost do not improve from 50 to 100
8 D20 025 030 0.35 0/40
g 0.7 1
c —— 5gen. GA is an efficient technique to explore the solution
-O . . .
806l 10 gen. space without evaluating all the options
T — 50 gen. 7 Parameter l Value
g —— 100 gen. Generations 50
é) 0.5 1 ! | ! Population size 50
' 0.0 0.2 0.4 0.6 0.8 1.0 Cmssingr proh;}hilily SO‘f
Normalized number of beams Seacstecl L
Mutation probability 20%
Mutated genes 5%
Absorb probability (pap.) 25%
Direction probability (pdir) 50%

GA parameters

&IEEE

H .
Motivati Beam Genetic Results Conclusion
I I otivation Placement Algorithm Y



Results: Baseline comparison
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69 Beam placement

= We want to assess how the metrics developed in this
work impact the global resource allocation problem by

The Resource Allocation Problem

Power allocation

Frequency assighment
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Beam placement

Beam shaping

using published algorithms for the other subproblems

= |Independently on the algorithms used, we show a reduction
in both Power and Unmet Demand compared to previously

published heuristics

GA: Genetic Algorithm

BPH: Beam Placement Heuristic

Beam

Genetic
Algorithm
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Conclusions

= The beam placement problem as formulated in this work is NP-hard. Thus, traditional optimization
techniques tend to perform poorly.

= The Genetic Algorithm presented achieves a high convergence factor, being able to find a near-optimal
Pareto-Front in around 50 generations with only 50 individuals (~20 min in a single-core standard computer)

= The problem-specific metrics developed in this paper represent a trade-off between power and Unmet
Demand. Solutions with higher number of beams and higher number of frequency slots tend to have more
UD and use less power, and vice-versa.

= Compared to previous heuristic methods, the approach presented in this work highly reduces the UD and
power usage of the complete resource allocation for high number of beams (>500). When using a Heuristic
and Random frequency assignment algorithms, UD is reduced by 100% and 50%, respectively, while power
is reduced by 40% and 20%.
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Thank you!
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