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ABSTRACT
Cube satellite (CubeSat) launches have increased exponentially over the last 20 years.  
This class of miniature spacecraft is well-suited for a set of nonconventional satellite 
architectures collectively known as formation flying.  With the exponential pace of 
launches expected to continue, the prospect of spectrum management for these complex 
formations arises.  In previous work, investigators focus on terrestrial applications of 
spectrum sensing, which have the luxury to utilize hardware with high size, weight, and 
power (SWaP) resources.  In this work, we develop and test a spectrum sensor for 
CubeSat radio applications.

Given that CubeSat radios are inherently designed for low SWaP, they cannot implement 
the computationally expensive spectral correlation analyzer (SCA) algorithms for signal 
detection.  To that end, our investigation focuses on the application of the SCA to square-
root-raised-cosine (SRRC) pulse-shaped quadrature amplitude modulation (QAM) 
waveforms using a field-programmable gate array (FPGA).  This model requires no prior 
knowledge of the radio-frequency (RF) channel.  We show that this model can 
consistently and accurately detect the symbol rate and center frequencies of waveforms 
located in a spectrum.

Index Terms—cubesat, spectrum sensing, spectral correlation analyzer, fpga
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‘Where shall I begin, please your Majesty?’ he 
asked. ‘Begin at the beginning,’ the King said, 

gravely, ‘and go on till you come to the end: then 
stop.’

–Lewis Carroll

INTRODUCTION

I.



CubeSats

Running total of CubeSat launches over the last two decadesNASA GRC AstroSDR
CubeSat Radio



CubeSat Swarms:  NASA AMES Starling 1 Missions



Spectral Sensing

Example of spectral use over time.  Using 
spectrum sensing we can maintain awareness 

of where and when licensed users or interferers 
are active.

Example of estimation results produced by a 
spectral correlation analyzer (SCA).  The peaks 

correspond to various waveform features.



The Streaming Spectral Correlation Analyzer 
(Streaming-SCA):

Blind Symbol Rate-Center Frequency Estimation

Digital logic block 
diagram of the 
streaming-SCA.

Equation of the 
streaming-SCA.



The Streaming Spectral Correlation Analyzer 
(Streaming-SCA):

Blind Symbol Rate-Center Frequency Detection

Detection is performed 
by comparing the test 

statistic of the 
estimate (lhs) with a 

threshold (rhs).

Using our binary hypothesis test, we can 
differentiate between false alarms and true 

detections.  The red threshold is proportional to 
beta.  The peak of each detected streaming-SCA 
instance corresponds exactly to the true symbol 

rate and center frequency of the received 
waveform.



The Optimal Threshold

Ability of our 
detector to properly 
classify signals as its 
threshold is varied.

Noisy, interfering 
signals used to 
generate ROC curve.

Youden’s J Statistic determines the optimal 
threshold of our test signal, which in turn is used 

to find the optimal beta of our detector.



If you don’t know where you’re going any road 
can take you there.

–Lewis Carroll

IMPLEMENTATION

II.



Threshold

Digital Logic 
block diagram 
of the optimal 

threshold.

The optimal threshold as determined by our ROC.



Blind Symbol Rate-Center Frequency Detector

lhs: Estimate of the correlation between a center 
frequency, a symbol rate, and the incoming samples.

rhs: Its optimal threshold.

Digital logic block diagram of 
the detector.



Spectrum Sensor

Block diagram of the spectrum 
sensor.  

Flexible to accommodate resources 
available on CubeSat. 

Can blindly sense entire spectrum, 
or if a preprocessing algorithm is 

used, can function as a faster semi-
blind spectrum sensor.  

Results are stored in a data 
structure to be used to make 

intelligent decisions of when to 
transmit, where to transmit, and 

at what rate!



“It would be so nice if something made sense 
for a change.”

–Lewis Carroll

Results

III.



Even for an Eb/N0 of  0, the probability of 
detection is nearly perfect!  This is shown with a 
high detection resolution, however.

The tradeoff is performance speed vs resolution.  We can 
intelligently determine an appropriate resolution by 

characterizing the frequency offset tolerance.

Characterization



Timing

Input – Candidate symbol rates to be searched. Output – Detected waveforms values.



“One of the hardest things in the world is to 
convey a meaning accurately from one mind to 

another.”

–Lewis Carroll

CONCLUSION

IV.



Streaming-SCACubeSat Swarms

Summary

Spectrum Sensing



Future Work

Characterization of waveforms outside of M-QAM-SRRC.

Development of symbol rate pre-processor.

Increased performance when ADC is faster than FPGA via decimation.

Resource reduction of streaming-SCA with Goertzel filter.
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