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Motivation

* The Cognitive Communications
project seeks to mature the
TRL of multiple network
optimization techniques

* The Cognitive Space Gateway
(CSG) builds upon the
Cognitive Network Controller
validated on SCaN testbed
flight experiment




NASA Digital Transformation

* Ongoing effort seeks to embrace the power of digital
technologies:

e Cloud computing (including micro services, containers, etc.)

 Artificial intelligence/machine learning
* Collaborative tools S

* Many others

* We have taken this approach to collaborate with
academic partners to advance cognitive networking
technologies

* Develop multi-hop cloud testbed for cognitive
network experiments +

* Enable knowledge transfer in a virtual environment



Network Modeling

* We drew inspiration from real missions, projects,
and programs including Starling, HelioSwarm,
Starlink, LunaNet, and TechEdSat

* From these, we estimated reasonable scenario
parameters such as:

*  Number of nodes

1013

* Network topology
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* Contact schedules

\‘, ARLINK-104 2
e Data rates
e Data volume

* Node storage and processing capabilities

* We constructed simulations using Satellite Orbital
Analysis Program (SOAP)



FExperiment Topology

We selected |2 nodes from the Starlink model in SOAP

The CSG takes contact start time, stop time and average distance
between nodes as inputs

Propagation delay of the links calculated using the average
distance between each pair of satellites within the satellite orbit
simulation

Node 1020 is the bundle source and node 1061 is the bundle sink

In the selected scenario, there exists large path redundancy
between any two nodes

* 4 of the 57 network links are affected by link disruptions according to the network
model
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Cognitive Space Gateway (CSG)

The CSG uses situated artificial intelligence
to determine the optimal outbound link for
data bundles

Makes autonomous (near) optimal decisions
on a per-bundle basis

The Cognitive Network Controller (CNC)
consists of a spiking neural network (SNN)
that works as the learning and decision-
making element for the CSG

Reward shaping determines instantaneous
rewards for reinforcement learning that
continually adapt the CNC
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Cognitive Network Controller (CNC)

WMi1,Ni ;i=1...3

* SNN is event-driven and involve low-power
consumption

* Uses a biological neuron model: Leaky-Integrate and
Fire d

’r£u(t) = —u(t) + RI(t)
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Vertices:

* A neuron fires a spike as soon as u(t) =6
* Core neurons (yellow) represent actions

e After spike, the membrane potential drops * Inhibitory neuron(s) (orange) provide potential regulation

* CNC:recurrently connected SNN where spike Fdges

emission activity indicates DTN routing decisions > biealieE: t_te Tt (39 £ CEr omes e el et oz
arriving spikes



CNC: Learning and Exploitation

* Bootstrap by applying constant stimuli i, to all neurons

* Synapse values (weights) influence the firing rates of the neurons

* The core neuron emitting spikes at the highest rate points to the selected action
* The "cost” C of the selected action is given by the expected bundle delivery time

* The CNC learns how to improve routing decisions by observing this cost (c;: selected core neuron,
g:inhibitory neuron): §=C —-C
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* Learning has linear time complexity

* Hyperparameter 7 is the learning factor



Reward Shaping

* Large propagation delays and link disruptions may prevent observing the cost C in practice

* Given a bundle addressed to node d, it is possible to estimate the cost at node i with:
091 = 105 5 a0 s A= U0k

J Average delivery time to neighbor j; T; ; = (n; + 1)S;
§)is the service time (obtained cross-layer or via bundle ACK)
n; is the buffer occupancy

j,d Average delivery time from neighbor j to destination d—passed by the neighbor

Stall time due to link disruptions obtained algorithmically from the contact plan



GRC Cognitive Lab VPC

FExperiments and Cloud Test Environment

Python implementation of the CSG (and CNC) [

. . AWS EC2
¢ Custom implementations: instances

* Licklider Transmission Protocol (LTP)

e Contact Graph Traversal: Shortest Estimate Time of Arrival (ETA)—
similar to Contact Graph Routing

e Test data flow of 1000 bundles of 100 kB each

Network consists of 12 Elastic Compute Cloud
* Assumed no link disruptions as only 7% of links were (EC2) instances

affected

T2.micro instance (I CPU, | GB RAM)
* Assumed links provide negligible packet loss rates

except for link 1067—1061, which is affected by large Ubuntu 18.04 image

signal loss yielding a packet loss ratio of 0.02.

Limited to two network interfaces, so IPIP
tunnels were used



Time Series Observations

* Typical observations for a flow sent at 10 bundle/s
* Both the CSG and the Shortest ETA method attempt to minimize the bundle delivery time

* CSG dynamically learns to avoid link 1067—1061 (affected by higher loss)—the times when that link
was used are highlighted (in green) in the path length chart
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Selection of Path Lengths
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Future Work

Develop flight-like CSG implementation integrated within existing DTN framework

Integrate software into multi-hop software defined radio ground testbed

Experiment with increasingly dynamic topologies

Enable discovery of neighboring nodes to support opportunistic routing



Thank You




*  CubeSatTitle Slide Image:

SCaN Testbed Slide | Image: R. Lent, D. Brooks, and G. Clark.“Validating the Cognitive Network Controller on NASA’s SCaN

Refere [ l C e S Testbed”. In: 2020 IEEE International Conference on Communications (ICC). Dublin, IE, June 2020

*  NASA Digital Transformation: https://www.nasa.gov/sites/default/files/atoms/files/396062_jan-jun_2019 it _talk_design_final.pdf
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