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CNN for Automatic Modulation Classification

• Automatic signal modulation classification (AMC) is a major research direction of signal recognition.

• AMC is the automatic identification of the modulation format of the transmitted signals by observing the
received data samples which are corrupted by the noise and fading channels.

• It is an intermediate operation between the signal detection and the data demodulation

• AMC plays an important role in civilian and military applications such as software-defined radio, cognitive
radio, dynamic spectrum management, interference identification and electronic warfare.

ACM 

System BPSK
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CNN for Automatic Modulation Classification

• Deep Learning (DL) has been described as a universal learning approach that is able to solve many types
problems in different application domains.

• Our focus is on implementing a DL engine in space that would enable Automatic Modulation Classification (AMC) outside of
Earth’s atmosphere. Implementation of modulation recognition algorithm would allow for the deployment of real-time, high rate,
low-power and useful neural network for RF communications.

• We explored a Convolutional Neural Network (CNN), and a Convolution Neural Network that Implements
Transfer Learning (CNN-TL) for the successful classification of different modulation schemes for data
transmission.

• The developed software was shown to successfully classify the modulation schemes using the open source Radio
ML 2018 dataset.
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CNN Algorithm

• Learns by extracting features from 
data samples using trainable 
convolution kernels (filters)

• Last layer is typical fully 
connected layer

• Very strong for image recognition 
and classification Feature Extraction Classification
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CNN for Transfer Learning

• Learns by extracting features from 
data samples using trainable 
convolution kernels (filters)

• Last layer is typical fully 
connected layer

• Very strong for image recognition 
and classification

• Transfer Learning

• Pre-train the convolution part of the 
network

• Train only the fully connected layer 
with new data

• Much simpler to implement in 
hardware

Feature Extraction Classification
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Radio ML Dataset

• Dataset used in this 
study
 RadioML 2018

 24 Modulation Classes

 SNR range: -20 to 30bB

• 4069 samples for each 
class in each SNR segment

• Sample size 2×1024 for 
CNN input
 I channel

 Q channel

• Little post processing 
within data
 Cut sample lengths

 Normalize to zero mean 
and unit variance

Class 

Number
Mod. Class

1 OOK

2 4ASK

3 8ASK

4 BPSK

5 QPSK

6 8PSK

7 16PSK

8 32PSK

9 16APSK

10 32APSK

11 64APSK

12 128APSK

13 16QAM

14 32QAM

15 64QAM

16 128QAM

17 256QAM

18 AM-SSB-WC

19 AM-SSB-SC

20 AM-DSB-WC

21 AM-DSB-SC

22 FM

23 GMSK

24 OQPSK
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CNN Transfer Learning

• CNN used for transfer learning test
 2 convolution layers

 2 fully connected layers

• Dataset broken into two groups

 Fully train on one set

 Transfer learn the other set

Class 

Number
Mod. Class

1 OOK

2 4ASK

3 8ASK

4 BPSK

5 QPSK

6 8PSK

7 16PSK

8 32PSK

9 16APSK

10 32APSK

11 64APSK

12 128APSK

13 16QAM

14 32QAM

15 64QAM

16 128QAM

17 256QAM

18 AM-SSB-WC

19 AM-SSB-SC

20 AM-DSB-WC

21 AM-DSB-SC

22 FM

23 GMSK

24 OQPSK

Transfer Set A
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CNN Transfer Learning

• CNN used for transfer learning test
 2 convolution layers

 2 fully connected layers

• Dataset broken into two groups

 Fully train on one set

 Transfer learn the other set
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CNN Transfer Learning

• CNN used for transfer learning test
 2 convolution layers

 2 fully connected layers

• Dataset broken into two groups

 Fully train on one set

 Transfer learn the other set
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Metric
Train A

(40 Epochs)

Train B

(40 Epochs)

Train A 

Transfer B

(40 + 40 Epochs)

Train B 

Transfer A

(40 + 40 Epochs)

Accuracy 91.15% 80.40% 78.32% 83.34%
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CNN Optimization

• Deeper CNN
 More convolution layers

 More fully connected layers 

 Fewer parameters

 Experiment is learning all 24 classes and testing using unique untrained data samples

Convolution Layers Filter Size FC Layers Epochs Parameters
Training

Accuracy (%)

Testing 

Accuracy (%)

2161616
1 by 5

204825024
40 521,042 82.0 74.8

1 by 3 40 519,954 78.9 71.7

21616161616 1 by 3
51225024 40 137,522 77.4 75.9

51212824 40 72,008 71.4 70.28

2161616161616 1 by 3 25612824
40 40,024 76.7 75.6

80 40,024 82.7 81.4

2121212121212 1 by 3 19212824
40 30,104 66.3 65.2

80 30,104 75.7 74.8

2121212121212 1 by 3 1926424
80 16,216 77.8 76.5

160 16,216 78.2 77.4

2888888 1 by 3 1286424
80 10,872 68.3 67.4

160 10,872 72.5 71.7

2888888 1 by 3 12824 160 4,152 54.6 54.06
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CNN Optimization

• Range of CNN designs were evaluated to find tradeoff between 
number of parameters and accuracy

 Two bold networks show strong accuracy vs. throughput results

Convolution Layers Filter Size FC Layers Epochs Parameters
Training

Accuracy (%)

Testing 

Accuracy (%)

2161616
1 by 5

204825024
40 521,042 82.0 74.8

1 by 3 40 519,954 78.9 71.7

21616161616 1 by 3
51225024 40 137,522 77.4 75.9

51212824 40 72,008 71.4 70.28

2161616161616 1 by 3 25612824
40 40,024 76.7 75.6

80 40,024 82.7 81.4

2121212121212 1 by 3 19212824
40 30,104 66.3 65.2

80 30,104 75.7 74.8

2121212121212 1 by 3 1926424
80 16,216 77.8 76.5

160 16,216 78.2 77.4

2888888 1 by 3 1286424
80 10,872 68.3 67.4

160 10,872 72.5 71.7

2888888 1 by 3 12824 160 4,152 54.6 54.06
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CNN Optimization

• Deeper CNN
 6 convolution layers

 2 fully connected layers 

 More layers and fewer parameters
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Optimized CNN Transfer Learning

• Transfer Learning to Add Class
 Step 1: Train CNN to learn 4 modulation types
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OOK
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• Transfer Learning to Add Class
 Step 2: Test with 4 learned modulations in addition 

to a new unlearned class

Optimized CNN Transfer Learning
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• Transfer Learning to Add Class
 Step 3: Use transfer learning to train only the fully 

connected layers

 Step 4: Test if the network is able to learn all 5 
modulations

Optimized CNN Transfer Learning

Training Here
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Conclusion and Future Work

• Summary

 CNN for AMC

 Low power deployment of signal modulation classification

 Through CNN optimization

 Transfer learning makes system adaptable

 Also reduces complexity of training if deployed on custom hardware

• Future Work

 Hardware Survey

 Best options for low SWaP deployment

 Algorithm refinement

 Optimize throughput and classification accuracy

 Dataset improvement

 Generate custom dataset using SDR for real world examination


