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Introduction

* Spoofers can generate false GNSS signals using publicly available
pseudorandom number (PRN) codes to disrupt one or more receivers

* Multiple GNSS signals are structured using a public signal as the in-phase
component and a restricted signal (with PRN codes unknown to civilians) as
the quadrature component

* Our example: the Galileo E1 code (f. = 1575.42 MHz)

* In-phase: Open Service = spoofable
e Quadrature: Public Restricted Service =2 not spoofable without

* We leverage the absence of a quadrature component in a spoofed signal by
inputting the quadrature component into an artificial neural network
(ANN) for classification
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Problem Formulation
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Signal Generation

* The baseband PRS signal is generated using an arbitrary navigation
message spread using a PRN sequence similar to a PRS code

e Chip rate —2.5575 Mcps

 Modulation — cosine binary offset carrier (BOC) with subcarrier frequency
15.345 MHz

e Code length — unknown, periodicity assumed to be greater than collection
time

» Samples collected over 0.1 s = 255750 chips, BOC modulated
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Signal Generation
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* Rayleigh Fading Channel
e Simulations done with and without fading

* Applies multipath to signal, without a dominant line-of-sight path between
satellite and receiver

* Testing robustness of deep learning classification

» Several weaker replicas with varying delays = impacts both cross-correlation
and cyclostationarity of signals
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Signal Generation

» Additive White Gaussian Noise (AWGN)

* For a desired signal-to-noise ratio (SNR), a white Gaussian sequence is scaled
and added to the normalized signal

* SNR is selected according to a range of values of the ratio of an expected
GNSS signal power to reasonable noise floor levels
e 0dB,-5dB,-10dB

* Spoofed signals are simply the white Gaussian sequence
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Cross-Correlation

* Each receiver is given an arbitrary delay to represent varying
pseudoranges to a satellite

* A reference receiver is selected and its PRS signal is cross-correlated
with the other receivers in the network

* For a network of N receivers, each data point is the peak value of
each of the N-1 cross-correlation formulations
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Cyclic Profile

* The spectral correlation function (SCF) of each received signal is
computed, and the cyclic profile is taken

* The cyclic profile represents the maximum spectral correlation at
each cyclic frequency a (we select 2049 separate values)

 Calculated using the fast spectral correlation (FSC) function

* The N cyclic profiles are concatenated into an N x 2049 data point as
an input to the ANN
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Cyclic Profile

Cyclic Auto-correlation function

Rla.7) = /xl T (t — %) - ¥ (f + %) gt i

Spectral Correlation function

S(a, f) = / R(a,7)e %717 dr.

Cyclic Profile

C(a) = arg max S(a, f)
f
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ANN Structures

Input Layer Hidden Layer 1
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* Long Short Term Memory (LSTM) - Includes feedback paths in order to
establish long-term patterns as the training/validation process occurs

* Convolutional Neural Network (CNN) — Includes pooling layers between
hidden layers which reduce the dimensionality of the data at each step
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Classification Accuracy, Cross-Correlation
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Simulation Results — Cyclic Profile

Validation Accuracy, Cyclic Profile
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Classification Accuracy, Cyclic Profile




Conclusions

e The CNN model is shown to be more robust than the LSTM model
regarding decreasing SNR and Rayleigh fading

* The cyclic profile results in more accurate classification across the
board, likely due to more information per data point

 Calculated using the fast spectral correlation (FSC) function

* The N cyclic profiles are concatenated into an N x 2049 data point as
an input to the ANN
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