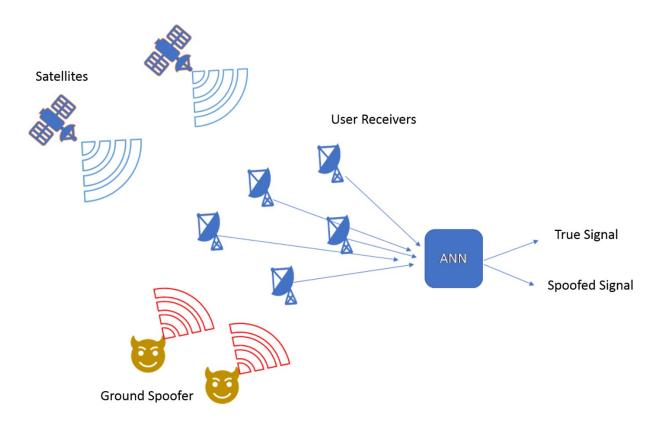


Satellite Navigation Anti-Spoofing Using Deep Learning on a Receiver Network

Darren R. Kartchner Rachel Fulcher Sudharman K. Jayaweera

CISL, Department of Electrical and Computer Engineering University of New Mexico Albuquerque, New Mexico, USA.


Introduction

- Spoofers can generate false GNSS signals using publicly available pseudorandom number (PRN) codes to disrupt one or more receivers
- Multiple GNSS signals are structured using a public signal as the in-phase component and a restricted signal (with PRN codes unknown to civilians) as the quadrature component
- Our example: the Galileo E1 code ($f_c = 1575.42$ MHz)
 - In-phase: Open Service \rightarrow spoofable
 - Quadrature: Public Restricted Service \rightarrow not spoofable without
- We leverage the absence of a quadrature component in a spoofed signal by inputting the quadrature component into an artificial neural network (ANN) for classification

Problem Formulation

Signal Generation

- The baseband PRS signal is generated using an arbitrary navigation message spread using a PRN sequence similar to a PRS code
 - Chip rate 2.5575 Mcps
 - Modulation cosine binary offset carrier (BOC) with subcarrier frequency 15.345 MHz
 - Code length unknown, periodicity assumed to be greater than collection time
 - Samples collected over 0.1 s \rightarrow 255750 chips, BOC modulated

Signal Generation

- Rayleigh Fading Channel
 - Simulations done with and without fading
 - Applies multipath to signal, without a dominant line-of-sight path between satellite and receiver
 - Testing robustness of deep learning classification
 - Several weaker replicas with varying delays → impacts both cross-correlation and cyclostationarity of signals

Signal Generation

- Additive White Gaussian Noise (AWGN)
 - For a desired signal-to-noise ratio (SNR), a white Gaussian sequence is scaled and added to the normalized signal
 - SNR is selected according to a range of values of the ratio of an expected GNSS signal power to reasonable noise floor levels
 - 0 dB, -5 dB, -10 dB
 - Spoofed signals are simply the white Gaussian sequence

Cross-Correlation

- Each receiver is given an arbitrary delay to represent varying pseudoranges to a satellite
- A reference receiver is selected and its PRS signal is cross-correlated with the other receivers in the network
- For a network of *N* receivers, each data point is the peak value of each of the *N-1* cross-correlation formulations

Cyclic Profile

- The spectral correlation function (SCF) of each received signal is computed, and the cyclic profile is taken
- The cyclic profile represents the maximum spectral correlation at each cyclic frequency α (we select 2049 separate values)
- Calculated using the fast spectral correlation (FSC) function
- The *N* cyclic profiles are concatenated into an *N x* 2049 data point as an input to the ANN

Cyclic Auto-correlation function

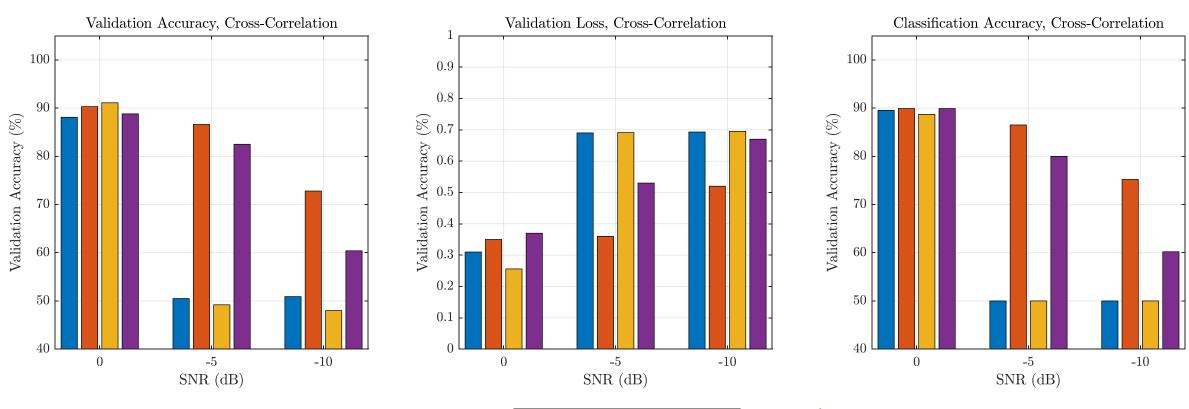
$$R(\alpha,\tau) = \int_{-\infty}^{\infty} x\left(t - \frac{\tau}{2}\right) x^*\left(t + \frac{\tau}{2}\right) e^{-j2\pi\alpha t} dt$$

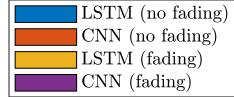
Spectral Correlation function

$$S(\alpha, f) = \int_{-\infty}^{\infty} R(\alpha, \tau) e^{-j2\pi f\tau} \, \mathrm{d}\tau.$$

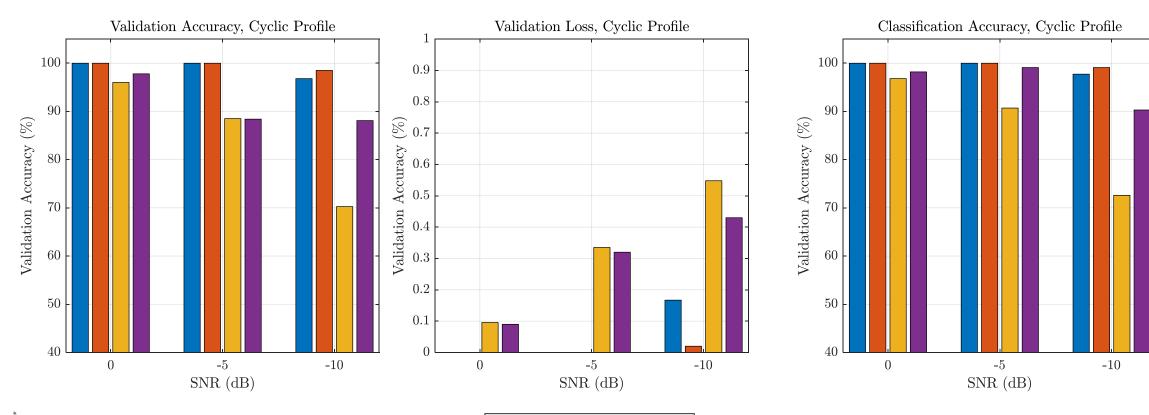
Cyclic Profile

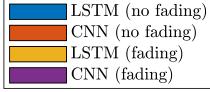
$$C(\alpha) = \arg\max_{f} S(\alpha, f)$$




- n_1 Hidden Layer H $h_{2,1}$ $h_{H,1}$ Output $h_{1,2}$ n_2 GPS or $h_{2,2}$ Classify Spoof n_3 $h_{1,3}$ h_{H,d_H} h_{2,d_2} h_{1,d_1} n_N
- Long Short Term Memory (LSTM) Includes feedback paths in order to establish long-term patterns as the training/validation process occurs
- **Convolutional Neural Network (CNN)** Includes pooling layers between hidden layers which reduce the dimensionality of the data at each step

Simulation Results – Cross-correlation





Simulation Results – Cyclic Profile

Conclusions

- The CNN model is shown to be more robust than the LSTM model regarding decreasing SNR and Rayleigh fading
- The cyclic profile results in more accurate classification across the board, likely due to more information per data point
- Calculated using the fast spectral correlation (FSC) function
- The *N* cyclic profiles are concatenated into an *N x* 2049 data point as an input to the ANN

