
Evaluating Reinforcement
Learning Methods for Bundle

Routing Control

University of Houston

IEEE CCAA Workshop, June 26–27, 2019 –Cleveland, OH

Gandhimathi Velusamy and Ricardo Lent

• Problem context:
• Space networks: long propagation delays, frequent network partitions, large

loss rates, limited capacity
• Increasing demand for bandwidth, performance expectations, less operational

burden
• Routing: key performance driver that becomes harder to control centrally as the

complexity of space networks increases
• How to achieve optimal routing decisions onboard

• Reinforcement learning:
• No pre-training, no need of policies
• Learning from experience, exploration, exploitation
• Context awareness and adaptation

• Neuromorphic computing
• Low-power, parallel computing paradigm
• Cognitive network controller for space gateways
• Performance vs. regular RL techniques?

Introduction

2

Space Network Routing
• Space gateways that search online the optimal routing point

• As a continuous and distributed process
• Optimal routing is a moving target
• Different metrics (e.g., latency) are of interest (rewards)

• Evaluate the (experimental) performance of different policy and value
RL iteration methods:
• Need of a reference routing application
• Identical assumptions (e.g., type of rewards) and testing conditions

Spiking neural network

O
bs

er
va

tio
ns

Goals and Rules

. .
 .

. . .

Le
ar

ni
ng

Data
Network
Decision

wireless,
long-delay links

Optical and
electrical
links

data
object

Cognitive
Gateway

Cognitive
Gateway

Cognitive
Gateway

Cognitive
Gateway

data
object

Cognitive Radio

Traditio
nal RF
link Traditio

nal RF
link

Cognitive Radio
Free-space
optical

Terrestrial
Network

Space
Network

RL-Based Routing Methods
Q-Routing

• Value iteration method

• Maintains Q-values for each possible next-hop or next-link decision (i.e.,
action)

• Reward is the inverse of cost expressed as the bundle delivery latency

• Cost rn related to decision ”n” to update:

• Routing decision is ℇ-greedy and seeks to minimize the average delivery
latency

RL-Based Routing Methods
Double Q-Learning

• Uses two Q-Functions QA and QB (two vectors of Q values)

• The action selection is ℇ-greedy using both functions

• Randomly updates one of the two vectors using reward Ra

if A is selected:

else:

RL-Based Routing Methods
Actor-Critic Reinforcement Learning (Learning Automata)

• Routing decisions are random with distribution P = [pj], j=1..N

• Uses the normalized reward (or costs) of Rl

• x1, x2 are the min/max Q-values (for costs)

• The probability distribution of action l is updated with:

Neuromorphic Computing
• Computation with biologically realistic neuron models

• Commonly known as 3rd generation neural networks

• Neurons have an analog-digital behavior:
• May accept external stimuli and inputs from other neurons
• Once their membrane potential reaches a certain level, they emit a spike
• Spike travels to other neurons through synapses
• Effect on the post-synapse depends on the type of pre-synapse (excitatory

or inhibitory) and the synapse strength (weight)

• Software vs. hardware implementations

Leaky-Integrate-and-Fire Neuron Model

R: Resistance
C: Capacitance
τ = RC: Time constant
I(t): Input current
u(t): Neural membrane
potential

Presynapse j is characterized by a weight wjk >= 0
excitatory or inhibitory

Spikes from the k-th presynapse
from j arrive as unit-impulses at
firing times f:

External
stimulus

e1 i1

c5

c3c7

c6

g

e2
i2

e3

i3

e4
i4

e5i5
e6

i6

e7

i7

e8
i8

c1
c8 c2

c4

i8

Iref

Iref
Iref

Iref

Iref

Iref

Iref
Iref

I1

I2

I3

I4I5

I6

I7

E8

E7

E6 E6

E4

E4

E2

Iref
E1

Cognitive Network Controller

• It consists of the recurrent SNN:

• SNN encodes Q-value related information

• Vertices:

• W is the set of synapses:

9

ci core neuron, one per action
available
g single (global) inhibitory neuron
ei excitatory neuron (optional)
ii inhibitory neuron (optional)

8-action CNC

Action Decision
• Exploitation uses ℇ-greedy

• The timing of spikes determines the action selection:
• Each core neuron represents each possible action
• All core neurons receive constant stimuli
• The first spike ”bootstraps” the SNN
• The core neuron producing the faster second spike indicates decision i*:

• where t(f)(x) is the time to fire of the f-th spike of neuron x

10

Learning Step
• Each action i is associated to performance cost C (reward = 1/C)

• The average observed cost is

• Weight updates are proportional to

• η>0 is the learning rate

• A normalization phase keeps weights within their effective range

• Learning complexity O(n)

11

Non-RL Routing Methods
• Shortest path (Dijkstra’s and Bellman ford algorithms)

• Require information exchange in their distributed versions
• May not be adequate for highly dynamic networks

• Random, Round Robin
• Routing decisions consists in the simple random selection or the rotation of

link selections
• Easy to implement with very low complexity (very fast)
• Starvation free, uniform resource allocation

Evaluation
• Linux VMs connected via 5 (physical) links: 2x512 Kbps, 2x1Mbps,

1x2Mbps

• Gateway and routing methods implemented in Python

• Simulated neuromorphic processor

• Emulated wireless links
• Emulated with point-to-point Ethernet (nominal rate: 1 Gbps)
• NetEm creates (symmetric) link impairments
• Non-preemptive, FCFS buffers

13

Source Dest

Propagation delay: 120 ms

Bundle arrival rate 𝜆

Experiment 1: Constant Link Parameters

• Links’ rate constant for the duration of each experiment

• Traffic consists of 100-Kb bundles sent at a rate 𝜆

• Results with random bundle sizes are very similar

• Parameter 𝜆 was chosen relatively large compared to the system
capacity
• This tends to saturate buffers yielding increasing delay over time
• Suboptimal routing decisions lead to worse response times (e.g., by

sending bundles to already saturated buffers)

Typical Observations of Routing Performance
(Single Run)

RR QR DQL LA CNC/SNN
routing method

0

0.2

0.4

0.6

0.8

1

lin
k

se
le

ct
io

n
ra

tio

Experiment 1: Average Results

Experiment 2: Variable Link Parameters

• Same traffic parameters used in the previous experiment

• Link impairments vary over time:
• Changes every 120 s
• Swap transmission rates of a 512-Kbps and a 1-Mbps link
• Each experiment lasts for 900 s
• Total bundles sent per experiment: 900 𝜆

• Performance differences between the CNC and the other RL
methods becomes more evident

Experiment 2: Average Results

Final Remarks
• Cognitive Network Controller:

• Application of neuromorphic computing to space network routing
• Autonomous and onboard decision making
• Networking concept possibly useful for other DTN frameworks

• Observations of the relative performance of the CNC:
• Reference test application, reproducible experiments
• Lower bundle delivery latency under mid-high demand than related RL

routing techniques
• Slightly worse performance under low demand, possibly because of the

time-complexity of the simulated neuromorphic processor

• We expect to further develop this work in the near future:
• Parameter selection
• Realistic testbed
• Deep space assumptions
• Hardware neuromorphic processor

Acknowledgement: This work was supported by an Early Career Faculty grant
from NASA’s Space Technology Research Grants Program

