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• Problem context:
• Space networks: long propagation delays, frequent network partitions, large 

loss rates, limited capacity
• Increasing demand for bandwidth, performance expectations, less operational 

burden
• Routing: key performance driver that becomes harder to control centrally as the 

complexity of space networks increases
• How to achieve optimal routing decisions onboard

• Reinforcement learning:
• No pre-training, no need of policies
• Learning from experience, exploration, exploitation
• Context awareness and adaptation

• Neuromorphic computing
• Low-power, parallel computing paradigm
• Cognitive network controller for space gateways
• Performance vs. regular RL techniques?

Introduction
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Space Network Routing
• Space gateways that search online the optimal routing point

• As a continuous and distributed process
• Optimal routing is a moving target
• Different metrics (e.g., latency) are of interest (rewards)

• Evaluate the (experimental) performance of different policy and value 
RL iteration methods:
• Need of a reference routing application
• Identical assumptions (e.g., type of rewards) and testing conditions
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RL-Based Routing Methods
Q-Routing

• Value iteration method

• Maintains Q-values for each possible next-hop or next-link decision (i.e., 
action)

• Reward is the inverse of cost expressed as the bundle delivery latency

• Cost rn related to decision ”n” to update:

• Routing decision is ℇ-greedy and seeks to minimize the average delivery 
latency



RL-Based Routing Methods
Double Q-Learning

• Uses two Q-Functions QA and QB (two vectors of Q values)

• The action selection is ℇ-greedy using both functions

• Randomly updates one of the two vectors using reward Ra

if A is selected:

else:



RL-Based Routing Methods
Actor-Critic Reinforcement Learning (Learning Automata) 

• Routing decisions are random with distribution P = [pj], j=1..N

• Uses the normalized reward (or costs) of Rl

• x1, x2 are the min/max Q-values (for costs)

• The probability distribution of action l is updated with:



Neuromorphic Computing
• Computation with biologically realistic neuron models

• Commonly known as 3rd generation neural networks

• Neurons have an analog-digital behavior:
• May accept external stimuli and inputs from other neurons
• Once their membrane potential reaches a certain level, they emit a spike
• Spike travels to other neurons through synapses
• Effect on the post-synapse depends on the type of pre-synapse (excitatory 

or inhibitory) and the synapse strength (weight)

• Software vs. hardware implementations



Leaky-Integrate-and-Fire Neuron Model

R: Resistance
C: Capacitance
τ = RC: Time constant
I(t): Input current
u(t):  Neural membrane 
potential

Presynapse j is characterized by a weight wjk >= 0
excitatory or inhibitory

Spikes from the k-th presynapse 
from j arrive as unit-impulses at 
firing times f:

External 
stimulus
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Cognitive Network Controller

• It consists of the recurrent SNN:

• SNN encodes Q-value related information

• Vertices:

• W is the set of synapses:

9

ci core neuron, one per action
available
g single (global) inhibitory neuron
ei excitatory neuron (optional)
ii inhibitory neuron (optional)

8-action CNC



Action Decision
• Exploitation uses ℇ-greedy

• The timing of spikes determines the action selection:
• Each core neuron represents each possible action
• All core neurons receive constant stimuli
• The first spike ”bootstraps” the SNN
• The core neuron producing the faster second spike indicates decision i*:

• where t(f)(x) is the time to fire of the f-th spike of neuron x
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Learning Step
• Each action i is associated to performance cost C (reward = 1/C)

• The average observed cost is

• Weight updates are proportional to

• η>0 is the learning rate

• A normalization phase keeps weights within  their effective range

• Learning complexity O(n)
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Non-RL Routing Methods
• Shortest path (Dijkstra’s and Bellman ford algorithms)

• Require information exchange in their distributed versions
• May not be adequate for highly dynamic networks

• Random, Round Robin
• Routing decisions consists in the simple random selection or the rotation of 

link selections 
• Easy to implement with very low complexity (very fast)
• Starvation free, uniform resource allocation



Evaluation
• Linux VMs connected via 5 (physical) links: 2x512 Kbps, 2x1Mbps, 

1x2Mbps

• Gateway and routing methods implemented in Python

• Simulated neuromorphic processor

• Emulated wireless links 
• Emulated with point-to-point Ethernet (nominal rate: 1 Gbps)
• NetEm creates (symmetric) link impairments
• Non-preemptive, FCFS buffers
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Experiment 1: Constant Link Parameters

• Links’ rate constant for the duration of each experiment

• Traffic consists of 100-Kb bundles sent at a rate 𝜆

• Results with random bundle sizes are very similar

• Parameter 𝜆 was chosen relatively large compared to the system 
capacity
• This tends to saturate buffers yielding increasing delay over time
• Suboptimal routing decisions lead to worse response times (e.g., by 

sending bundles to already saturated buffers)



Typical Observations of Routing Performance 
(Single Run)
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Experiment 1: Average Results



Experiment 2: Variable Link Parameters

• Same traffic parameters used in the previous experiment

• Link impairments vary over time:
• Changes every 120 s 
• Swap transmission rates of a 512-Kbps and a 1-Mbps link
• Each experiment lasts for 900 s 
• Total bundles sent per experiment: 900 𝜆

• Performance differences between the CNC and the other RL 
methods becomes more evident



Experiment 2: Average Results



Final Remarks
• Cognitive Network Controller:

• Application of neuromorphic computing to space network routing
• Autonomous and onboard decision making
• Networking concept possibly useful for other DTN frameworks

• Observations of the relative performance of the CNC:
• Reference test application, reproducible experiments
• Lower bundle delivery latency under mid-high demand than related RL 

routing techniques
• Slightly worse performance under low demand, possibly because of the 

time-complexity of the simulated neuromorphic processor

• We expect to further develop this work in the near future:
• Parameter selection
• Realistic testbed
• Deep space assumptions 
• Hardware neuromorphic processor 
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