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Introduction

* Problem context:

e Space networks: long propagation delays, frequent network partitions, large
loss rates, limited capacity

* Increasing demand for bandwidth, performance expectations, less operational
burden

* Routing: key performance driver that becomes harder to control centrally as the
complexity of space networks increases

* How to achieve optimal routing decisions onboard

* Reinforcement learning:
* No pre-training, no need of policies
* Learning from experience, exploration, exploitation
* Context awareness and adaptation

* Neuromorphic computing
* Low-power, parallel computing paradigm
* Cognitive network controller for space gateways
* Performance vs. regular RL techniques?



Space Network Routing

Space gateways that search online the optimal routing point

* As a continuous and distributed process

e Optimal routing is a moving target
Different metrics (e.g., latency) are of interest (rewards)

* Evaluate the (experimental) performance of different policy and value

RL iteration methods:

* Need of a reference routing application
Identical assumptions (e.g., type of rewards) and testing conditions
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RL-Based Routing Methods

Q-Routing

Value iteration method

Maintains Q-values for each possible next-hop or next-link decision (i.e.,
action)

Reward is the inverse of cost expressed as the bundle delivery latency

where, * =x,, a = a,,.
Qn-1(z,a), otherwise.

Cost r, (1—-a)Qn_1(z,a)+a(r,+v mbin Q(Yn, b)),
Qn(xa a) - {

Routing decision is €-greedy and seeks to minimize the average delivery
latency



RL-Based Routing Methods

Double Q-Learning

e Uses two Q-Functions Q* and Q8 (two vectors of Q values)
* The action selection is E-greedy using both functions
* Randomly updates one of the two vectors using reward R,
if Ais selected:
a* = argmin, Q“(x, a)
Q4 (z,a) = (1 — a)Q"(z,a) + a(Ry + Q" (x,a%))

else:

b* = argmin, QZ(z,a)

QP (z,a) = (1 - @)Q"(z,a) + a(Ry + Q" (x,b"))



RL-Based Routing Methods

Actor-Critic Reinforcement Learning (Learning Automata)

Routing decisions are random with distribution P = [p;], j=1..N

. Uses the normalized reward (Or COStS) Of R| Penalty Probability ¢ci€ {c1, ca,... ¢/}
Rl . y > Environment
5 o - &1
Io — X1
. Stochastic
Action Automaton ‘Input X € {0, 1}
°

x1, x2 are the min/max Q-values (for costs) ~ *€f “®

The probability distribution of action / is updated with:

pr < pr+a(l—B)(1—p)—bBp

pitp; — (L= Bap; + b3(— —pj) 3 Vi #L



Neuromorphic Computing

 Computation with biologically realistic neuron models

e Commonly known as 37 generation neural networks

* Neurons have an analog-digital behavior:
* May accept external stimuli and inputs from other neurons
* Once their membrane potential reaches a certain level, they emit a spike
* Spike travels to other neurons through synapses

» Effect on the post-synapse depends on the type of pre-synapse (excitatory
or inhibitory) and the synapse strength (weight)

* Software vs. hardware implementations



Leaky-Integrate-and-Fire Neuron Model
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Cognitive Network Controller

* It consists of the recurrent SNN: G=(V,W)
* SNN encodes Q-value related information

* Vertices: . .
V=A{c1,...,Cny9,€1,..,€ny01,...,0n}

C; core neuron, one per action
available

g single (global) inhibitory neuron
e excitatory neuron (optional)

i inhibitory neuron (optional)

W is the set of synapses:
w(ci,cj), 4, = 1,...,n
w’“(ei,cz—), w"’(z’i,ci), i,k — 1,...,72, 8-action CNC
wk(g,¢;), i, k=1,...,n

V| =3n+1 (W|=n(n+2)



Action Decision

* Exploitation uses E-greedy

* The timing of spikes determines the action selection:
* Each core neuron represents each possible action
* All core neurons receive constant stimuli
* The first spike "bootstraps” the SNN

* The core neuron producing the faster second spike indicates decision i*:

c;» = argmin t(Z)(ci) 1=1,...,n
ci

* where tf(x) is the time to fire of the f-th spike of neuron x
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Learning Step

Each action i is associated to performance cost C (reward = 1/C)
The average observed cost is G + aC + (1 — a)G
Weight updates are proportional to =G -C

’UJ(Cj,Cz') Fw(cjaci)—i_né ,jzl,,n,?,?é]
wh(g,¢;) <+ wk(g,e;) —nd sk=1,...,n

n>0 is the learning rate

A normalization phase keeps weights within their effective range

Learning complexity O(n)
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Non-RL Routing Methods

e Shortest path (Dijkstra’s and Bellman ford algorithms)
* Require information exchange in their distributed versions
* May not be adequate for highly dynamic networks

e Random, Round Robin

* Routing decisions consists in the simple random selection or the rotation of
link selections

* Easy to implement with very low complexity (very fast)

» Starvation free, uniform resource allocation



Evaluation

* Linux VMs connected via 5 (physical) links: 2x512 Kbps, 2x1Mbps,
1x2Mbps

* Gateway and routing methods implemented in Python
* Simulated neuromorphic processor

e Emulated wireless links
* Emulated with point-to-point Ethernet (nominal rate: 1 Gbps)
* NetEm creates (symmetric) link impairments
* Non-preemptive, FCFS buffers

Bundle arrival rate A

Vyvyvyy

Propagation delay: 120 ms
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Experiment 1: Constant Link Parameters

Links’ rate constant for the duration of each experiment

Traffic consists of 100-Kb bundles sent at a rate A

Results with random bundle sizes are very similar

Parameter A was chosen relatively large compared to the system
capacity
* This tends to saturate buffers yielding increasing delay over time

* Suboptimal routing decisions lead to worse response times (e.g., by
sending bundles to already saturated buffers)



Typical Observations of Routing Performance
(Single Run)
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Experiment 1: Average Results
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Experiment 2: Variable Link Parameters

e Same traffic parameters used in the previous experiment

* Link impairments vary over time:
 Changes every 120 s
e Swap transmission rates of a 512-Kbps and a 1-Mbps link

* Each experiment lasts for 900 s
» Total bundles sent per experiment: 900 A

e Performance differences between the CNC and the other RL
methods becomes more evident
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Final Remarks

* Cognitive Network Controller:
* Application of neuromorphic computing to space network routing
e Autonomous and onboard decision making
* Networking concept possibly useful for other DTN frameworks

* Observations of the relative performance of the CNC:

» Reference test application, reproducible experiments

* Lower bundle delivery latency under mid-high demand than related RL
routing techniques

 Slightly worse performance under low demand, possibly because of the
time-complexity of the simulated neuromorphic processor

* We expect to further develop this work in the near future:
* Parameter selection
* Realistic testbed
* Deep space assumptions
* Hardware neuromorphic processor
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