
Reinforcement Learning 
Applied to Cognitive Space 

Communications 

Rigoberto Roche and Janette C. Briones
NASA Glenn Research Center

IEEE CCAA Workshop



Overview
• The future of space exploration depends on robust, reliable communication systems. As the number of 

such communication systems increase, automation is fast becoming a requirement to achieve this goal. 
• A reinforcement learning solution can be employed as a possible automation method for such systems. 

The goal of this study is to build a reinforcement learning algorithm which optimizes data throughput 
of a single actor. 

• A training environment was created to simulate a link within the NASA Space Communication and 
Navigation (SCaN) infrastructure, using state of the art simulation tools developed by the SCaN Center 
for Engineering, 

• Reinforcement learning was then used to train an agent inside this environment to maximize data 
throughput. The simulation environment contained a single actor in low earth orbit capable of 
communicating with twenty-five ground stations that compose the Near-Earth Network (NEN). 

• Initial experiments showed promising training results, so additional complexity was added by 
augmenting simulation data with link fading profiles obtained from real communication events with the 
International Space Station.

• A grid search was performed to find the optimal hyperparameters and model architecture for the agent. 
Using the results of the grid search, an agent was trained on the augmented training data. 

• Testing shows that the agent performs well inside the training environment and can be used as a 
foundation for future studies with added complexity and eventually tested in the real space 
environment. 



Neural Networks and Reinforcement Learning
• Neural networks are modeled after the human 

brain. Individual neurons are connected together 
and activate in response to an input to produce an 
output. 

• Each neuron sums weighted inputs feeding into it, 
then passes the weighted sum through a non-linear 
activation function to produce its output. In this 
way, some neurons are activated while others are 
not depending on the given input. 

• A reinforcement learning agent interacts with the 
environment over time. At each timestep, the 
environment provides a state to the agent which 
takes an action, resulting in a numerical reward 
and new environment state



Simulation Environment
• A custom environment was used to generate simulated links. 

This environment was a modification of open source Gym. 
• The Gym environment continuously generates packets of a 

specified size in bits for the agent to downlink. 
• The agent chooses a link at each time step, and the remaining 

bits in the packet are decremented according to the data rate 
of the chosen link.

• Three different numerical rewards are given to the agent: 0.1 
for selecting a non-real link, 1 for selecting any real link, and 
60 when a full packet is downlinked. 



Simulation SetUP



Simulation Environment (cont)

• A representative set of training 
episodes are necessary to effectively 
train an agent capable of succeeding 
in the real world environment. 

• This was achieved by varying the 
starting epoch of the simulation 
along with the inclination and semi-
major axis of the agent’s orbit. 

• Over 3000 episodes in total were 
generated using this method. 



Building and Training the Agent 



Feature Choice and Transformation



Hyperparameter Tuning
• Models were compared 

against one another using 
a sum of their average 
reward score on the 
validation episodes and 
their recall score. 

• Recall was prioritized 
over precision in this 
study because the goal of 
the study was to validate 
an agent’s ability to 
correctly switch when it is 
necessary. 

• Once this ability is 
proven, techniques can be 
used to mitigate the 
frequency of extraneous 
switches made by the 
agent. 

• The hyperparameters which produced the best model during the Grid 
Search were used to train a final agent on the same 450 episodes used 
in the Grid Search with a 75/25 train test split. 

• The agent was thus trained on 337 episodes and validated on 113 
episodes. 



Results



Results (cont)

• The lowest score on any episode in the validation set was 94.03%, and the highest was 100%.

• The average score was 98.12% with a recall of 74.85%, a precision of 49.91%, and F-beta score 
with beta = 3, of 0.713. 

• A recall of 74.85% is a positive result and shows that the agent switches the majority of the time 
that a switch is necessary.

• The precision is very poor at under 50%. Due to the method used to augment the episodes, certain 
timesteps in the episodes had links which had the exact same BER. Among the 78,787 classified 
False Positives, 1,812 of these came from a decision by the agent to switch from one link to 
another with the exact same BER. 

• Intuitively it is understood that these are not truly false positives but rather an issue with the 
definition of false positive used in this experiment 



Discussions
• The environment created for this study can be used for testing other reinforcement learning agents. 

It can also be updated to use a different underlying simulation tool, without requiring a rewrite of 
agent training code, thanks to the decoupled nature of the simulation itself and agent training 
environment. 

• There will always be drawbacks to simulating the training environment for an agent one hopes to 
deploy in the real world. Antenna slewing and competition for ground station resources were both 
excluded from the environment for simplicity in this initial research. 

• These are important considerations for any cognitive link algorithm. The agent was not tested in an 
environment which incorporates these and thus its performance in such an environment cannot be 
estimated. In addition, downlink of data was simulated numerically and not using actual channels 
capable of introducing additional noise and interference. 

• Despite these drawbacks, the environment presented sufficient complexity to the agent to ensure 
that results are valid indicators of the viability of reinforcement learning as a solution to the 
problem of cognitive links. 

• The reinforcement learning techniques used in this study are simple, especially when compared 
with newer techniques such as Deep Q-Learning, Asynchronous Actor-Critic Agents, and Inverse 
Reinforcement Learning. The agent’s ability to learn in the simulated environment developed for 
this study validates that the core methods used in reinforcement learning are applicable to the 
problem



Conclusions
• This study presented an alternative approach to standard methods for the task of link switching of a 

space orbiting asset between ground stations via a reinforcement learning approach. 
• This approach was selected because it allows for scalability and generalization to other decisions within 

a well-defined infrastructure, such as that of a communications system. 
• In this study, a reinforcement learning algorithm was built, which optimizes the data throughput of a 

single space asset. A training environment was created using available simulation tools developed by 
the SCENIC lab at Glenn Research Center, that model the closest possible representation of the real 
operating environment.

• The reinforcement learning algorithm was used to train an agent inside this environment to maximize 
data throughput. 

• Results from the conducted experiments showed promising characteristics of this approach in terms of 
correct decision making, even in the presence of additional complexity, such as strong multipath fading 
in the communication link. 

• The testing showed that the agent performs well inside the training environment and can be used as a 
foundation for future studies with added complexity and eventually it can be tested in the real space 
environment. 


