

Introduction

• Develop intelligent routing method for delay
tolerant networks (DTN)

• Reduce number of bundles (protocol data unit)
replicated in Epidemic style routing

• Opportunistic routing scenario versus
deterministic

• Evaluate classifiers of varying complexity for
delivery prediction

• Forward bundles to nodes with greatest
likelihood of delivering message

Motivation

Delay Tolerant Networking

• Message ferry/relay

• Neighbor discovery

• Opportunistic routing

Mobile ad hoc Networks

• Common protocol layer

• Storage for long term
disruptions

Machine Learning

• Cognitive Networks

• Data driven approach to
quality of service

• Reduce labor

Software Defined Networking

• Rule-based switches

• Control and data plane
separation

Routing Problem

• Find efficient paths through complex network
• Increasing number of nodes
• Heterogeneous protocol stack
• End to end path changing in time

• Opportunistic routing vs. scheduled contacts
• Data-driven approach

• Delivery history
• Retransmission attempts

Delay Tolerant Networking

• Architecture and protocols for
networks with:

• Long round trip times

• Lack of continuous end-to-end
path

• Asymmetric and/or error
prone links

• Heterogeneous protocols

• Bundles are stored until they can
be forwarded to a neighbor

Payload Block – Contains
application data

Primary block – processing
and routing information for
bundle

Application

BP

IP

Ethernet

UTP

TCP

IP

ATM

DS-1

LTP

Encap

AOS

Ka-band

LTP

Encap

Proximity -1

UHF

LTP

Encap

Proximity -1

UHF

Application

BP

Mission
 Operations

Center

Ground
Station

Relay
Satellite

Deep Space
Vehicle

IP Router

BPBPBP

IP

Ethernet

UTP

Opportunistic DTN Routing

• Nodes may discover each other
• Exchange "handshake" information

• Epidemic routing: send any
bundle the neighbor doesn't
already have

• Best probability of delivery
• Creates duplicate bundles in the

network

• Wastes transmission opportunities,
data storage, processing

• How to determine best neighbors
to get data to final destination?

Approach

• Container based emulation
• Run DTN protocols to

generate data set and test
routing module

• Feature vector:
• Source id

• Destination id

• Time

• Forwarded node

• Delivery Success

• Derived from node system
logs

CORE emulation
of IBR-DTN nodes

with epidemic
routing

(Python, C++)

Data Collection Data Analysis Model Construction

Model
Validation

CORE emulation
of IBR-DTN nodes
with classification

based routing
(Python, C++)

Deployment

Train model on available
dataset

(Scikit-learn, Keras,
TensorFlow)

Cross validation,
analyze metrics

(Scikit-learn)

Export
Model

Emulated Nodes Machine Learning Workstation

Process network
logs into feature
vector and labels

(Python)

Network Architecture

• Nodes save local network
logs

• Forward to central
processing node

• Data analysis (train and test)
perform at central node

• Distribute model to nodes

• Allows for extensive
computing resources not
available to many flight
computers

Emulation Environment

• Emulate multiple nodes on
a single host

• All nodes share same OS,
network stack and
resources are isolated

• Uses Linux containers
(LXC) and Ethernet
bridging

• Emulates network layers 3
and above (network,
transport, session,
application)

Tool Chain

• Configure CORE emulated
nodes
• IBR-DTN configuration

• Automate node motion

• Automate transfer of
random messages

• Compile network logs
• Format into feature vector

and labels

• Train and validate model

• Export model

Base Router

• Manages database of
neighbors and known bundles

• List of local bundles and
recently purged bundles

• Routing extensions
implement routing decisions
for particular algorithm

Base Router Module

Neighbor Database

Neighbor 1
Summary

Vector

Neighbor 2
Summary

Vector

Neighbor 3
Summary

Vector

Local Summary Vector

Local Purge Vector

Neighborhood
Routing

Extension
(Default)

Static Routing
Extension

Epidemic
Routing

Extension

Classification
Routing

Extension

Events: Data Changed,
Bundle Queued, Transfer

Completed, Transfer
Aborted

Topology
Changed

Bundle
Received

Classification Routing Extension

• Load learning model

• Search for possible
neighbors/bundles

• Check epidemic criteria

• Do not replicate bundles
known to neighbor

• Predict delivery

Events: Data Changed, Bundle Queued,
Transfer Completed, Transfer Aborted

For Each Neighbor:
 Begin Bundle Search

Create Bundle Filter

Add Bundle if:
Hop Limit !=0

Not For Local Delivery
Not Over Payload Limit

Is Singleton Bundle
Not Known to Destination

Not for Direct Neighbor Delivery

Predict_delivery(Local EID,
Destination, Current Neighbor, Time

Index) Returns True

Transfer Bundles in Bundle Filter

Transfer Completed Event

Bundle
Storage

Bundle
 Metadata

Classification Routing Extension

Neighbor
Database

Neighbors and
Summary
Vectors

Load Learning Model

Decision Tree & Random Forest

• Decision Tree

• O(n×m log m) for n attributes, m training
samples

• Random Forest
• Ensemble of decision trees
• Each tree based on subset of data
• Take the most common answer
• Controls overfitting

• O(M(n×m log m)) for M trees, n
attributes, m training samples

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 = −𝑝⊕ log2 𝑝⊕ − 𝑝⊝ log2 𝑝⊝

𝐺𝑎𝑖𝑛 𝑆, 𝐴 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 −

𝑣∈𝑉𝑎𝑙(𝐴)

𝑆𝑣
𝑆

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

Autoencoder

• Neural network based

• Attempt to reconstruct input dataset by
developing encoding and decoding
functions that minimize the error
between the input data and
reconstructed data

• Complexity ~ O((N+F)DI) where N is
number of nodes, D is size of hidden
layer, I is number of iterations, F is
dimension of feature vector

• Reduce amount of manual feature
engineering required

X1

X2

X3

X4

X5

a2

a3

a4

a1

a2

a3

a1

a2

a3

a4

a1

X1

X2

X3

X4

X5

^

^

^

^

^

Encoder Decoder

Training Times and Sample Size

• Training set 37,984 samples

• Validation set 16,280 samples

• System specs:
• Lambda stack for Ubuntu 18.04

• NVIDIA RTX 2070

• Intel Core i7-8750H

• 16 GB DDR4 RAM

Model Training Times

Algorithm Training Time (s)

Decision Tree 0.05

Random Forest (100 trees) 0.77

Autoencoder (50 iterations) 323.36

Machine Learning Metrics

• Precision=
𝑡𝑝

𝑡𝑝+𝑓𝑝

• Recall=
𝑡𝑝

𝑡𝑝+𝑓𝑛

• F1 score=
2 𝑝×𝑟

𝑝+𝑟

𝑡𝑝= # true positives, 𝑓𝑝 = # false positives

𝑓𝑛 = # false negatives
0

10

20

30

40

50

60

70

80

90

100

D-Tree Random Forest Autoencoder

Precision

With Source Node Without Source Node

0

10

20

30

40

50

60

70

80

90

100

D-Tree Random Forest Autoencoder

Recall

With Source Node Without Source Node

0

10

20

30

40

50

60

70

80

90

100

D-Tree Random Forest Autoencoder

F1 Score

Source Node Without Source

Machine Learning Metrics

Accuracy=
1

𝑛
σ𝑖=0
𝑛−1 ො𝑦𝑖 = 𝑦𝑖

ො𝑦𝑖 =predicted value, 𝑦𝑖= true value
n= number of samples

Area Under the Receiver Operating Characteristic Curve

0

10

20

30

40

50

60

70

80

90

100

D-Tree Random Forest Autoencoder

Accuracy

With Source Node Without Source Node

0

10

20

30

40

50

60

70

80

90

100

D-Tree Random Forest Autoencoder

AUROC

With Source Node Without Source Node

Routing Metrics

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

1.0E+04 1.0E+05 1.0E+06

P
er

ce
n

t
D

el
iv

er
ed

Bandwidth (bps)

Bundle Delivery Ratio

Epidemic (TTL=90)

Epidemic (TTL=60)

Classification (TTL=90)

Classification (TTL=60)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

1.0E+04 1.0E+05 1.0E+06

N
u

m
b

er
 o

f
B

u
n

d
le

s
Ex

p
ir

ed

Bandwidth (bps)

Bundles Expired

Epidemic (TTL=90)

Epidemic (TTL=60)

Classification (TTL=90)

Classification (TTL=60)

Bundle delivery ratio =
𝑏𝑢𝑛𝑑𝑙𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑏𝑢𝑛𝑑𝑙𝑒𝑠 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

Conclusion and Future Work

• Decision tree performed reasonably well for simple dataset

• Future work to expand feature vector with buffer capacity, node
location, retransmission attempts

• Additional methods such as reinforcement learning

• Apply a variety of techniques to specific aspect of routing problem

• Software defined networking architecture
• Clear delineation between control and data plane

