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Introduction and Motivations
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• Cognitive Radio (CR) has been widely adopted to address the growing 
scarcity of electromagnetic spectrum for radio frequency (RF) 
communication [1]–[3]. 
 Machine learning techniques have provided promising solutions in both 

wideband and narrowband spectrum sensing and other radio frequency 
signals related applications [6]–[8]. 

• A major challenge for machine learning based wideband spectrum 
sensing applications in CR is that feature visualization method such as 
Spectral Correlation Function (SCF) on the wideband can be 
computationally expensive. 
 Efficiently identifying correlated features for the targeted spectrum-sensing 

tasks is necessary to achieve an effective tradeoff between the low 
computational complexity and the high decision-making accuracy.
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• We focus on developing a spectral attention-driven reinforcement 
learning-based intelligent method for effective and efficient detection of 
important signals in a wideband spectrum. 
 As the first stage to achieve this goal, in this paper we assume that the 

modulation technique used is available as a prior knowledge of the 
targeted important signal.

 While the receiver has the knowledge of the modulation scheme of the 
target signal, 
 It does not have the information of the carrier frequency. 
 There may exists frequency-hopping spread spectrum depending on 

the opportunistic channel selection of the CR transmitter.
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• As an example, consider the 
frequency-time spectrum of a 
wideband background signal that 
contains 2FSK, 4FSK, and QPSK-
modulated signals within a random 
bandwidth ranging between 50 
and 500 MHz.

• Our task is to detect a target signal 
whose modulation technique, 
BPSK is known as a priori 
knowledge. 

Fig. 1: Spectrum with target signal among other 
signals.
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Fig. 2: Overview of our proposed method.

• Our proposed spectral attention-driven reinforcement learning-based 
intelligent method mainly comprises:
 SCF-based Feature Visualization
 Spectral Attention-Driven Detection Mechanism



Proposed Method
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• We employ the SCF to pre-process the received RF signals and to 
visualize the observed spectrum environment. 
 The output of our SCF-based visualization method is a 2-D  image that 

characterizes the features associated with all the received signals. 
 The features presented by the 2-D image associated with different 

spectrum ranges do not have equal values for contributing to the target 
signal detection. 

Fig. 2: Overview of our proposed method.
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• We exploit the reinforcement learning and deep learning techniques to 
develop a spectral attention-driven intelligent detection scheme. 
 To adaptively identify the critical spectrum range whose features presented 

by the 2-D image 
 To selectively integrate the critical features of the selected spectrum range 

to achieve the signal detection. 

Fig. 2: Overview of our proposed method.
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• The modulated signals are treated as cyclostationary processes that refer 
to the processes with periodic statistics, such as mean and 
autocorrelation.

• Spectral correlation function (SCF) 𝑆𝑥
𝛼 𝑓 is formulated by implementing 

Fourier transform on cyclic auto-correlation function (CAF) 𝑅𝑥
𝛼 𝑙 that 

calculates the amount of correlation between different frequency shifted 
versions of a given signal and represents the fundamental parameters of 
their second order periodicity.

 ቐ
𝑆𝑥
𝛼 𝑓 = σ𝑙=−∞

∞ 𝑅𝑥
𝛼 𝑙 𝑒−𝑗2𝜋𝑓𝑙 (1)

𝑅𝑥
𝛼 𝑙 = lim

𝑁→∞

1

2𝑁+1
σ𝑛=−𝑁
𝑁 𝑥 𝑛 𝑥∗[𝑛 − 𝑙]𝑒−𝑗2𝜋𝛼𝑛 𝑒−𝑗𝜋𝛼𝑙 (2)

where 𝑓 denotes the digital temporal frequency of the modulated signal, and
𝛼 = 𝑚/𝑇0 be the cyclic frequency that indicates the cyclic evolution of the 
waveforms where 𝑚 is an integer and 𝑇0 is the process period.
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• The 2-D SCF patterns can be obtained by calculating Eq. (1) for different values of  
𝛼 and 𝑓.

• Each pixel intensity of the 2-D image represents the SCF value for the 
corresponding digital temporal frequency and cyclic frequency.

Fig. 3: Top view of the SCF patterns of (a) BPSK; (b) QPSK; (c) 2FSK; and (d) 4FSK modulation schemes: 
lighter color intensity represents higher value.
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Fig.4: Reinforcement learning-based spectral attention-
driven method.
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Fig.4: Reinforcement learning-based spectral attention-
driven method.

• The output of the SCF-based 
method is only a small patch 
that is defined by the center 
temporal frequency 𝑓𝑡 and 
center cyclic frequency 𝛼𝑡 at 
time 𝑡, of the 2-D image that is 
potentially generated using the 
signals received across the 
wideband spectrum. 

• The selected spectrum 𝑓𝑡 , 𝛼𝑡
is called spectral attention in 
our work and the decision on 
the spectral attention is made 
adaptively by using our spectral 
attention-driven method. 
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Fig.4: Reinforcement learning-based spectral attention-
driven method.

• The SCF-based visualization 
output of the signals observed 
in the previously selected 
spectrum is reshaped as a 
vector and fed into the value-
encoding neural network that 
generates the encoding for 
value 𝐕𝑡. 

• A spectrum location-encoding 
neural network generates the 
representation 𝑆𝑡 for the 
spectrum location (𝑓𝑡 , α𝑡). 

• The fusion neural network (NN) 
is used to generate a fused 
representation 𝐅𝑡 of 𝐕𝑡 and 𝐒𝑡. 



Spectral Attention-Driven Detection Mechanism
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Fig.4: Reinforcement learning-based spectral attention-
driven method.

• A recurrent neural network 
(RNN) is designed to characterize 
temporal features embedded in 
𝐹𝑡. 
• The RNN has one hidden layer 

that is denoted by 𝐡𝑡 for time 𝑡. 
• The hidden layer is generated 

via a NN structure using the 
previous time-step value of 
hidden layer 𝐡𝑡−1 and 𝐅𝑡 as 
inputs. 
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Fig.4: Reinforcement learning-based spectral attention-
driven method.

• The hidden layer of the RNN, 𝐡𝑡, is 
considered as the input for three 
NNs, (1) Spectrum Location 
Selection NN that generates the 
spectrum location for the next time-
step (𝑓𝑡+1 , α𝑡+1), (2) Classification 
NN  that obtains the binary 
detection decision on spectrum 
sensing, and (3) baseline NN that 
calculates the baseline 𝑏𝑡 for 
formulating our reinforcement 
learning (RL)-based training 
procedure.
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• We model our spectral attention-driven target as a partially observable 
Markov decision process (POMDP) and optimize the process adaptively 
via a policy gradient-based reinforcement learning method.
 The state vector 𝐬𝑡 is defined by the hidden layer of the RNN 𝐡𝑡 that 

summarizes the information extracted from the history of past observations. 
 The action vector 𝐚𝑡is defined by using the spectrum location {𝑓𝑡, 𝛼𝑡} and 

the binary detection outputs of the neural network structure.
 The cumulative reward 𝑅 is defined as 𝑅 = σ𝑡=1

𝑇 𝑟𝑡, where

𝑟𝑡 = ቊ
1 if classification decision is correct at 𝑡 = 𝑇

0 otherwise
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• Our spectral attention-driven method is optimized adaptively using a 
policy gradient-based reinforcement learning method.
 The gradient of the total expected reward can be approximated as follows:

𝛻𝜃𝐽 𝜃 ≈
1

𝑀𝑇
σ𝑖=1
𝑀 σ𝑡=1

𝑇 𝛻𝜃 ln 𝜋𝜃 𝐚𝑡 𝐬1:𝑇 𝑅𝑡
𝑖 − 𝑏𝑡 , where 𝑀 is the Monte 

Carlo sampling number. 
 A loss function 𝐿 is defined considering reward maximization and reducing 

the classification error. 

𝛻𝜃𝐿 = −𝛻𝜃𝐽 𝜃 +
1

𝑀
𝛻𝜃 σ𝑖=1

𝑀 𝑦𝑖 − ത𝑦 , where

𝑦𝑖 is the actual label and ത𝑦 is the predicted label in the 𝑇th time step. 
 The parameter set is updated iteratively based on the gradient-descent 

update rule: 𝜃𝑛+1 = 𝜃𝑛 − 𝛼𝛻𝜃𝐿, where 𝛼 is the learning rate and 𝑛 is the 
index of the training trials. 
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• Our spectral attention-driven method is optimized adaptively using a 
policy gradient-based reinforcement learning method.
 While training, the network is expected  to learn a policy to decide what 

locations on the spectrum to look at to make a reliable classification decision 
at the timestep 𝑇. This will reduce the computation cost of calculating SCF on 
a wide bandwidth.

Fig.5: Example of the reduced 
SCF pattern calculation for the 
proposed 5-step attention-
based method. 

 The full grid represents the whole temporal 
and cyclic spectrum considered. 

 The parts in blue are where SCF-based 2D 
pattern calculated for the machine learning-
based spectrum sensing.

 The arrows show the transition of focus for 
the 5 steps attention-based method. 

 Therefore, only 5 out of 64 of SCF calculation 
is needed to for the proposed attention-
based method, which is a large reduction in 
computation cost. 
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• In the simulations, we consider the frequency-time spectrum of a 
wideband background signal consisting of 2FSK, 4FSK, and QPSK-
modulated signals within a random bandwidth ranging between 50 and 
500 MHz and a BPSK-modulated target signal. 

• The objective of the simulations is to detect the BPSK-modulated target 
signal.

Parameter
Vector 

Dimensions

Input 16

Time-steps (𝑇) 5

Encoding for value (𝑉𝑡) 128
Encoding for spectrum location 
(𝑆𝑡)

128

Fused representation (𝐹𝑡) 256

Hidden layer (ℎ𝑡) 256

Spectrum location output 2

Classification output 1

TABLE 1: PARAMETERS OF THE SPECTRAL ATTENTION-DRIVEN METHODS USED IN THE SIMULATIONS
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• In this scenario, we assume that there is only one of the BPSK, QPSK, 2FSK, and
4FSK-modulated signals is present at the receiver in the considered time window.

• The carrier of the modulated signal is randomly selected from 100 MHz, 200 MHz,
300 MHz, and 400 MHz.

• For all considered carrier frequencies, the detection accuracy remained above
93% for this scenario.

Fig.6: Detection accuracy of the target BPSK signal in Scenario I.



Scenario II
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• In this scenario, we consider a background with one, two, or none of QPSK, 2FSK,
4FSK-modulated signals and the target BPSK-modulated signals are present in
some of the received time windows.

• The detection accuracy obtained using our proposed attention-driven method is
comparable with the accuracy using a regular two-layer convolutional neural
network (CNN) with full spectrum input.

. Fig.7: Detection accuracy of the target BPSK signal in Scenario II.
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• In this paper we present our initial  work on developing a bio-inspired 
spectral attention-driven method for effectively detecting an event-driven 
target signals in a wideband spectrum. 

• Our spectral attention-driven method proposed in this paper consists of 
two main components: a SCF-based spectral visualization scheme and a 
spectral attention-driven mechanism that adaptively selects the spectrum 
range and implements the intelligent signal detection. 

• As illustrated in the simulation results, our proposed method can achieve 
high accuracy of signal detection via effectively selecting the spectrum 
range to be observed. 

– Achieving a good tradeoff between a high accuracy and low computation cost.

• We believe that our proposed spectral attention-based method can lead 
to an efficient adaptive intelligent spectrum sensor designs in cognitive 
radio (CR) receivers.  
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Questions?
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