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Introduction

• Cognitive Radios built on software defined radio (SDR) platforms are being developed and matured to 
address the problem of spectrum underutilization.

• Commercial technology investments are pushing the limits of reconfigurability, processing, and networking 
within the space communications architecture.

• As the development evolves to increasingly wideband capability, it is important to complement it with 
advanced ultra-wideband antenna technology for the future (e.g. support spectrum services for both 
commercial and defense frequency bands).

• The advent of machine learning and cognition provides an opportunity for this antenna of the future to 
not only react to adverse conditions, but learn to optimize its configuration for future scenarios within the 
complex, dynamic spacecraft environment i.e. become a cognitive antenna.

Image Sources: Northrop Grumman

Cognitive & Machine Learning 
Adaptations to Support Advancing 

Antenna Technology in Space
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Machine Learning Pedigree and Examples

Project – Resilient Network Controller (RNC)
Organization – Northrop Grumman
Capability - Adaptive, spectrum-aware, network 
management tool
Mission – Extends capability of Gateway Manager into 
heterogeneous network management

Project – Cognitive Mission Computer 
(CMC)
Organization – Northrop Grumman
Capability - Framework for Artificial General 
Intelligence with a repository of AI and 
machine learning algorithms

Project – Spectrum Challenge
Organization(s) –Northrop Grumman
Capability – Technology development and integration 
of AI and ML in the RF domain for future DoD
applications.
Mission – Competition aimed at helping military and 
commercial users share increasing less bandwidth.

Project – Spacecraft Cognitive Antenna 
Development Design Study
Organization(s) – SSC & Northrop Grumman
Capability – Cognitive antenna that can sense and 
transmit RF signals in the K- and Ka-band and 
cooperate with a radio to modify waveform 
characteristics to enhance performance.

Source: NG RAIN Summit

Image Sources: Northrop Grumman
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No. Category System Goals

1 Frequency The Cognitive Antenna shall operate anywhere from 18 GHz to 33 GHz.

2 Bandwidth The Cognitive Antenna shall have an adjustable bandwidth from 10 MHz to 200 MHz.

3 Beamwidth The Cognitive Antenna shall support an arbitrary beamwidth for variable data rates.

4 Coverage The Cognitive Antenna shall provide Hemispherical coverage.

5 Beams The Cognitive Antenna shall support at least four (4) independent beams.

6 EIRP The Cognitive Antenna shall support variable EIRP dependent on use case applications.

7 Nulling The Cognitive Antenna shall provide directional nulling to minimize interference. 

8 Power The Cognitive Antenna shall support low power per channel, e.g. <500 mW where feasible.

9 Interoperability The Cognitive Antenna shall be interactive with a Cognitive Radio.

Cognitive Antenna Motivation

• Cognitive Radio (CR): Defined as a radio with the ability to change its transmitter parameters 
based on interaction with the environment in which it operates, Source: Federal 
Communications Commission (FCC).

• Cognitive Antenna (CA): Defined as an environmentally perceptive antenna that can 
dynamically allocate bandwidth and / or adjust beam direction and directivity (beamwidth), 
EIRP, provide beam nulling, etc. to optimize spectral, spatial and temporal resources to 
complement cognitive radio technology, Source: National Aeronautics and Space 
Administration (NASA).
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Cognitive Mission Workflow

Cognitive Antenna mission is to adapt to / learn from the environment and dynamically adjust its 
parameters to improve end-to-end communications performance.

Receive / Sense Process / Learn / Adapt Modify Comms 
Parameters / Transmit 

Spacecraft Environment

Environmental Inputs
• Intended Signal 
• Noise / Interference
• Spectral / Spatial 

Availability 

Mission Priorities

Receive Chain
• Rx Antenna Gain
• Filtering
• Amplification
• Down-Conversion
• ADC
• Demodulation
• Interferometry 

Spacecraft Dynamics & Pos.

Cognitive Radio (CR) Controls

Antenna Cognition
• Optimization and Learning for 

Frequency, Bandwidth, Beam 
Direction / Directivity / Nulling, 
And EIRP modification 

• Self-healing 

Regulatory Constraints

Intelligence Sharing with CR
• Spectrum / Spatial Availability
• Optimized Antenna Config

Transmit Chain
• Modulation
• DAC
• Filtering
• Up-Conversion
• Beam steering, directivity,

and nulling
• Radiation

Image Sources: Northrop Grumman
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Example Interference Mitigation Scenario with 
Cognitive Antenna

Image Sources: Northrop Grumman, CATSATs Overview. 2019. NASA   
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Advanced Autonomous Dynamic Spectrum 
Access (DSA)

Image Sources: Shared Spectrum Company

SSC’s DSA provides autonomous decentralized operations for greatly increased network survivability.
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State-of-the-Art Survey – Exploring Potential Algorithm 

Implementations for the Cognitive Antenna

Algorithm Description Applicability to Cognitive Antenna

Bayesian Learning Updates beliefs about elements in the system based 

on observations

Estimation of other secondary user activity in a 

repeated auction for spectrum access1

Hidden Markov Model (HMM) A process of deriving a model of states, observations 

probabilities, and state transitions

Prediction in spectrum sensing, decision, 

sharing, and mobility2

Support Vector Machines (SVM) A classifier that learns given a function (separation 

shape) or kernel enabling classification of 

complicated data spaces

Signal identification3, protocol identification4

Multilayer Perceptron Neural 
Network

Learns non-linear transformation of inputs to produce 

outputs with real values, classifications, or action 

selections

Beamforming capability driven by neural 

network elements5; 

Convolutional Neural Network Neural network performing the same set of 

operations (e.g. filters) over all elements in an array

Indoor localization6; direction of arrival 

estimation7; proposed: receive processing for 

an AESA where local signal deviation and

dynamics may indicate informative 

environmental effects

Recurrent Neural Network e.g. 
Long Short Term Memory (LSTM)

Prior states enable learning and processing of 

temporal patterns

Proposed: Training neural network receive 

beamformer / nulling parameter selection given

prior spatial-temporal signal and using SINR for 

reinforcementReinforcement Learning (Q-
Learning)

Estimate system state and policy for parameter / 

action selection given the estimated state; learn 

using positive and negative reinforcement

State-of-the-art cognitive communications algorithms provide a vast trade space for Cognitive Antenna 
selection.
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Trade Space Evaluation Process

Establish the Study Problem
• Develop a problem statement
• Identify requirements & constraints
• Establish analysis level of detail

Review Inputs
• Check requirements and constraints for 

completeness & conflicts
• Develop customer-team-communication

Select & Set Up Methodology
• Choose trade off methodology
• Develop & quantify criteria, including 

weights where appropriate

Identify & Select Alternatives
• Identify alternatives
• Select viable candidates for study

Analyze Results
• Calculate relative value based on chosen 

methodology
• Evaluate alternatives
• Perform sensitivity analysis
• Select preferred analysis
• Re-evaluate results

Measure Performance
• Develop models and measurements of 

performance
• Develop values for viable candidates

Document Process & Results

Through an agile, proven-trade evaluation process and utilization of internal engineering expertise, we 
will determine the feasibility of a Cognitive Antenna that meets / exceeds NASA’s goals.
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Vision for the Future - Next Generation SCaN 
Architecture

• While the Near Earth Network (NEN) is the primary focus of this feasibility study, Lunar and 
Mars architectures are also of high interest for a cognitive antenna application and will be 
explored.

• The benefits of autonomous communications optimization and learning extends beyond our 
planet and has the potential to greatly enhance mission resilience and overall performance.

Image Source: Next Gen SCaN Architecture. 2018. NASA   
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• As cognitive radio technology becomes more prominent in the space 
communications domain, it is imperative that a complementary ultra-wideband 
cognitive antenna is developed.

• Northrop Grumman and Shared Spectrum Company are developing the 
hardware and cognitive architecture of a K / Ka-band cognitive antenna to 
ascertain its feasibility within the next-gen NASA SCaN architecture.  

• The conclusions of this study will determine whether there is an opportunity to 
develop and implement a cognitive antenna technology demonstrator.

Summary

Cognitive and machine learning algorithms will be critical for future space based systems to optimize 
communications in complex, dynamic environments. 
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Abstract

• With the emergence of more complex space systems, there is a strong 
need to optimize network and data link capacities that will work in concert 
with cognitive radios to manage the spectrum effectively. A cognitive 
antenna for this matter will be an environmentally aware antenna that 
can manage bandwidth, beam direction and directivity, equivalent 
isotropically radiated power (EIRP), and nulling to improve spectral, 
spatial, and temporal resources and complement cognitive radio 
technology. We propose to survey different artificial intelligence and 
machine learning techniques for the purposes of aggregating data from 
various sources (e.g. cognitive radio, environment, instrumentation, etc.) 
that can be utilized to facilitate smart decisions about how to configure a 
complex phased array to ensure threshold link performance is achieved. 
Furthermore, we will explore where the cognition controlling algorithms 
should reside within the highly integrated space system to yield higher 
communications performance benefits.
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