National Aeronautics and Space Administration

Testing a Neural Network Accelerator on a High-Altitude Balloon

Gilbert Clark / NASA Glenn Research Center Ethan Barnes / NASA Intern (2018)

Introduction - Speakers

- Gilbert Clark
 - NASA Glenn Research Center
 - Cleveland, OH
- Ethan Barnes
 - Student intern in summer of 2018
 - Firmware lead for flight systems

Agenda

- Introduction and Motivation
 - Applied engineering project for students
 - Improve Technology Readiness Level (TRL) for on-board processing
- Flight Experiment Design
 - Balloon communications payload
 - Processor, hardware, software, etc.
- Experiment Results
 - Experiment was generally successful
- Moving Forward
 - Using platform as basis for future experiments

An Internet of Things ... in Space

- There are commonalities between space and ground sensors
 - Step 1: take an instrument
 - IoT: temperature sensor in refrigerator
 - Space: expensive telescope
 - Step 2: mix it with a processor, storage buffer, and an RF (or optical!) link
 - IoT: LTE, 900 MHz ISM, 433 MHz ISM, etc.
 - Space: Optical, Ka-band, S-band, UHF, etc.
 - Step 3: place instrument and push gathered data to remote destination
 - IoT: often a cloud (e.g. Amazon, Google, Azure, etc.)
 - Space: ground-based processing elements
 - Step 4: SCIENCE HAPPENS!
 - IoT: assurance that food won't spoil
 - Space: assurance that new frontiers have been explored

An Internet of Things ... in Space (cont.)

- Many common research areas, too!
 - Routing through sensor networks
 - Relatively new area in *space* communications
 - One reason: inter-satellite links are *hard* to get right
 - Spectrum has been historically dedicated to specific missions
 - Existing relays *don't route*
 - No packet processing capability operate entirely at RF layer
 - Edge computing
 - "On-Board Processing" (OBP) for the space-centric folks
 - Instead of returning *all* data, pre-process data to extract features and just return those
 - Substantially reduces amount of bandwidth required to collect data
- This talk focusing on OBP elements
 - Other aspects are under active research / development as well, though!

On-Board Processing (objectives)

On-Board Processing (objectives)

On-Board Processing (objectives)

On-Board Processing

- Objective: become familiar with approaches to on-board processing
 - Learn how hardware can be applied toward this task
 - Enumerate different approaches to on-board processing
 - Hardware should minimize Size, Weight, and Power (SWaP)
- Opportunity: high-altitude balloon flight
 - Seven students split across two different internship programs
- Show that commercial off-the shelf (COTS) component may be used ...
 - ... to execute AI tasks directly in near-space ...
 - ... at a low SWaP cost

On-Board Processing (cont)

- Experiment primarily focused on development of a platform
 - Put together a functional intelligent communication system ...
 - ... within SWaP constraints of balloon
 - 4 lb. upper limit on weight
 - Styrofoam container approximately 1' x 1' x 1'
- Sanity check / risk mitigation for future development efforts
 - Likely that future missions will use different hardware
- Offers an excellent *applied* engineering opportunity for students
 - " BUT IT ALL WORKED SO WELL IN THE SIMULATION! ARGH!"

Processing Elements

- Two aspects of development
 - Communications system
 - On-board Processor
- Informal trade studies completed for both aspects
- Selections were
 - Communications: ARM microcontroller + 902 MHz ISM-band radio
 - OBP: Raspberry Pi Zero + Myriad 2 MA2450
 - Packaged in unified "Google AIY Vision Kit"
 - Following charts offer a brief overview of why the second selection was made
 - If there's interest in ARMs / radios reviewed, feel free to get in touch

OBP Evaluation

- Looking for an on-board processing system that was:
 - Simple to set up and work with
 - Students would have limited time available
 - Low-cost
 - Some risk of damage or loss associated with a balloon flight
 - Low SWaP
 - Batteries are heavy and the payload was weight-constrained, so less power is better
 - Capable of supporting work in intelligent systems research ...
 - ... at a level that students would likely be able to contribute to
- Based on requirements, looking for system with AI / ML emphasis

OBP Experiment

- Selected Google AIY Vision Kit
 - Includes 1 GHz ARM SoC (Raspberry Pi Zero)
 - Designed for hobbyists and students
 - Hardware acceleration for (very specific types) of neural networks
 - Power consumption within acceptable parameters
 - No requirement for USB support on OBP
- Overview of combined platform is provided on next slide
 - Will let Ethan take over from here to discuss the work performed
 - Also will be discussing experimental results and where the platform might go

Platform Integration and Design

Platform Integration and Design (cont.)

Ground System Raspberry Pi 3

Flight System Diagram on Previous Slide

Ground System

- Raspberry Pi 3 running ground software
 - Recorded telemetry frames and instrumentation frames received from flight
 - Flight system sent three different frame types
 - Telemetry was sent once per 2.5 seconds
 - Instrumentation was sent once every second
 - Payload data was sent once every 1.5 seconds
- Attached to 900 MHz radio via USB to serial converter
 - Communicated with radio directly via custom format
- Ran a small 802.11 access point and web server
 - Allowed people to join the AP and monitor the balloon's progress
 - Could view telemetry data and location data in real time

Experimental Design

- Ensure hardware performs properly at altitude
 - Repeatedly run a test on known input and check that:
 - Results are consistent across executions,
 - Timing is consistent across executions, and
 - No errors are encountered
- Execute a compute-intensive image classification routine
 - Attempts to determine an object's general "type"
 - e.g. "guitar", "hat", "kitty", etc.
- Repeat for as many executions as can be performed ...
 - ... until the balloon is recovered or the battery dies
- Use 900 MHz radio system for downlink of telemetry data
 - Also to instrument channel and evaluate loss, etc.

Flight Results

The balloon was in the air for 135 minutes, and reached a maximum altitude of 112,000 feet.

Experiment Results

Conclusions

- The communications package worked as expected
 - Coverage was maintained for a large portion of the flight
 - Vegetation was a significant issue for the system as designed
 - Future work replace with a different type of antenna system
- The Vision Kit performed as expected during the flight
 - There was no obvious difference in execution timing between runs
 - Large variance may be due to e.g. variations in SD card write latency
 - Other applications running at the same time that the experiment was!
- The platform could be used to support future work in this area
 - A low-cost means to test AI / ML techniques on a platform in near-space

Future Work

- This experiment was only to demonstrate viability
 - Show that the hardware and configuration generally work
- Moving forward, we would need to adapt a custom neural network
 - Porting to run on the hardware takes some effort ...
 - ... but still *seems* possible for a student to tackle in a summer
 - Possibilities include link parameter tuning, data route selection, etc.
- Alternatively, could repeat experiment with different hardware
 - Google's Coral TPU chipset is one possibility along these lines
 - The MicroZED might be another (FPGA-based) option
- Notably, future work could be based on this platform
 - Largely general-purpose: could be adapted to serve in many capacities

Acknowledgment + Questions

- Thanks to a very large number of folks from GRC for their help!
 - Pulled a functional flight project together in just under 12 weeks
 - Many individuals lent their time and expertise to help make this possible ...
- Thanks to all of you for listening!
- Contact information is included on the paper
 - Please feel free to get in touch for further conversation ...

Are there any questions?