

Cognitive Scheduling and Resource Allocation for Space to Ground Communications **Cognitive Communications** for Aerospace Applications Workshop Southwest Research Institute® June 25-26, 2019 **Michael Koets Justin Blount**

Jarred Blount

- Too much data, Too little bandwidth
 - New sensors and instruments produce data at higher rates and in larger volumes
 - Many more spacecraft transmitting
 - We can't add bandwidth
 - We can't gain much in spectral efficiency
- We consider the case of space to ground communications
 - Applicable to important real-world systems
 - Scientific observation
 - Earth imagery
- Techniques applicable to other communications applications

shot Engineeting

How to Solve the Problem.

- Automated analysis on the spacecraft
 - Reduce the volume of data that must be transmitted to the ground
 - Extract meaningful or valuable information from the data
- More capable communications technologies
 - Optical Links
 - European Data Relay System (EDRS)
 - New RF bands
- Use the communications resources more efficiently
 - This is the approach we're talking about today

Cognitive Communications

Automated reasoning

- Requires a formal representation of communications and networking problems
 - Unambiguous and precise
 - Sufficiently rich to address realistic problems
- Requires a mechanism for processing problems expressed in the formal representation
 - Operate on the problem description
 - Produce desirable solutions

Formal Representation

- Flexible enough to capture a variety of problems
- Complete and detailed enough to make generated solutions applicable to real-world problems
- Precise enough to yield specific, actionable plans
- Supports the generation of actual solutions
- Reasonable computational complexity
- Sacrifice of detail is inevitable
- Incompleteness in inevitable

Model Elements

- Communicators
 - Can be extended beyond the space to ground problem
- Communications Channels
 - Opportunities to elaborate and extend
- Capabilities
 - Heterogeneous and evolving spacecraft capabilities
- Visibility
 - Orbital dynamics a key aspect of any space communications systems
- Exclusions
 - Avoid unrealizable solutions
- Demand
 - Complex, time-varying need for data transport

Building a Schedule

- Scheduling
 - Assigning the use of communications channels to specific communicators at specific times
 - Avoiding conflict
 - Meeting demand
- Timing Granularity
 - Duration of a resource allocation
 - Scaled appropriate to the problem
 - Impacts complexity of scheduling
- Rescheduling
 - Update communications plan as circumstances and needs change

- Only allocate communications channels a communicator can use
- A communicator can only use a channel for one purpose
- A communicator cannot send and receive on a channel at the same time
- A communicator cannot use a channel if it would interfere with other scheduled communications

Good Schedules

- Mechanism to choose a *desirable* schedule from a collection of *valid* schedules
- Characteristics
 - Only schedule communications if there is demand to transfer data
 - Only schedule enough resources to meet demand
 - Schedule more data transfer if there is more demand
- Philosophy of good schedules
 - Heuristic objectives
 - Distinct from optimality
 - Yields improvements in computational complexity

Reasoning

- Reasoning Process
 - Begin with a connectivity graph
 - Allocate edges to meet demand
 - Prune the graph to enforce validity
 - Explore options to identify a good schedule
 - Repeat for each time interval
- Reduces to canonical scheduling problem
- Implementation
 - We have employed Answer Set Programming
 - Other metaheuristic techniques are relevant

CYGNSS Mission

- Cyclone Global Navigation Satellite System
- Measure ocean surface wind field to characterize development of tropical cyclones
- Constellation of eight microsatellites in LEO
- Launched December 2016
- Model mission for cognitive scheduling performance analysis

Performance

- Problem Scenario
 - Eight LEO spacecraft, slow distribution of orbits
 - Three ground stations
 - RF communications on eight channels
 - Equivalent capacity on all channels
 - No interference between channels
 - More data transfer demand than capacity
- Comparison
 - Static allocation of channels to satellites
 - Cognitive solution using Answer Set Programming

Day	Demand Scheduled		
	Fixed	Good	Increase (%)
1	90,020	107,424	19
28	94,117	442,240	370
43	90,890	572,592	530
58	89,917	637,576	609

Conclusions

- Cognitive Communications and Networking
 - Rigorous, expressive formulation for describing communications problems
 - Automated reasoning to find solutions to the problems
- Abstract model describing key characteristics of space to ground communications
- Proof of principle implementation using Answer Set Programming
 - Outperforms static, preplanned schedule
 - Reasonable computation times
- Future Directions
 - Extend the expressivity of the model
 - Explore additional reasoning strategies
 - Apply to more complex, real-world problems
 - Extend the approach to other aspects of space operations