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Introduction

* The transponders are equipped with high power amplifiers (HPAs), which, unfortunately, cause nonlinear distortions to
the transmitted signal, since HPAs normally operate close to or at saturation, so as to maximize power efficiency.

* This nonlinear distortion can be characterized as amplitude modulation-to-amplitude modulation (AM-AM), and
amplitude modulation-to-phase modulation (AM-PM) effects.

* AM-AM and AM-PM distortions cause interference signal non-recognizable.

* The conventional predistortion (PD) method cannot handle the non-linearization problem in the presence of
interferences.

AM-AM Curve for X band  AM-PM Curve for X band AM-AM Curve for X band AM-PM Curve for X band

Typical High Powwer Amplifier AM-AM Curve for X Band ; Typical High Powwer Amplifier AM-PM Curve for X Band

o
T
I

a
T

IN
T
I

w
T
L

-0+

Output Phase, degrees

N
T
I

12+

Normalized Output Power, dB
©

-14 | 1r
O AM-AM Curve / O AM-PM Curve
16 < | | | - Looked-up Output Power o ) / ‘ -~ Looked-up Output Phase
-25 -20 -15 -10 -5 0 5 10 = 20 15 -10 5 0 5 10

N
&

Normalized Input Power, dB Normalized Input Power, dB

Simulated HPA AM-AM and AM-PM curves for X band Signal



Outline

" |ntroduction

= CONOPS and System Model

* Extended Saleh’s Model

= Reinforcement Learning based PD Design

= Conclusion and Future Work




CONOPS Description
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To linearize satellite transponder in the presence of interferences




System Model
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Proposed on-ground solution for near-term implementation

This solution only requires us to modify the configurations of the hub and user terminals, which can achieve the goal of low cost.
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Extended Saleh’s Model: HPA Modeling
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Extended Saleh’s Model: HPA Modeling

s(t) , x(t) y(t)
— = | Predistorter >
(PD)

HPA

Saleh’s model has been proposed for characterizing an HPA’'s AM-AM and AM-PM distortions accurately. The extended
model is designed especially for travelling wave tube (TWT) and /or solid high power amplifiers.

The complex signals s(t), x(t), and y(t) can be written as follows.
s(t) = psiye’%©
x(t) = pypye’¥*®

y(©) = pyye’r®
where psty, Px(t)r Py(e), and Oy, Ox(t), Oy (r) are the amplitude

and phase of the complex signals s(t), x(t), and y(t), respectively.

We let M(py(r)) and @(py(r)) be the normalized AM-AM and AM-
PM responses of the HPA due to the input signal x(t), then we
have

y(t) — M(px(t))ej(ex(t)+q)(9x(t)))
Then, the original Saleh’s model is extended for HPA by including
eight extra parameters (ag, a;, by, and by, @y, a1, By and (1),
resulting in the following generalized equations for M(px(t)) and
CID(px(t)) as follows.

_ AoPx(t)
M(pxe) = Py =

ap + ﬁo(Px(t) + bo)z

a1,0£(t)

2
a, + 1 (Px(t) + bl)
We can write exp(jOy () as

q’(px(t)) =

x(©)

Px(t)
y(t) can be further obtained as

e]gx(t) =

, alp_’)zc(t)
] 2
a1 +B1(Px(r)+b1)

apx (1)

2
ao + Bo(px(ey + bo)
It is obvious that the ideal PD output for a given input
s(t)is:

y(t) = e

x(t)

ap + .Bo(Px(t) + bo)z
xo

051P,2¢(t)
Z
a1+/31(Px(t)+b1)

—J
e

= s(t)

processing time.

Extended Saleh’s Model was developed in order to accurately characterize a wide range of HPAs, including, L-/S-/X-
/Ku-/Ka-band HPAs. The Eight-parameter Model was selected to provide the required accuracy and minimum




Extended Saleh’s Model: HPA Modeling
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Extended Saleh’s Model: HPA Modeling

Normalized Output Power, dB
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dam = (a0, bo, @0, Bo} = {3.6407,0.3063,11.1163, 4.2947};
qpy={a,, by, a;, B;} = {0.4978,0.1273, 74.6172, 1.0879}.
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Extended Saleh’s Model: PD Modeling

Normalized Output Power, dB
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BER Performance Evaluation

U Unfiltered QPSK for assessing the PD’s impacts on the waveform at saturation

Simulated Imperfect Carrier Vs Theoretical Bit Error Rate for QPSK
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BER performance for unfiltered QPSK signal passing through a transponder with and without PD at Ka-band
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Machine Learning-based PD Controller

Reinforcement learning (Rl.) is the subfield of machine learning concerned with decision making and
optimized control. It studies how an agent can learn and adapt to achieve desired goals in a complex and uncertain
environments.

Rewards
v
PD controller: neural SATCOM environment
network agent
State ~ © o o Actions
representation R e A AT A = >
" o i S M @ - |1 ™A e =
<> e
® o ® 0 - 1 N\ e N )
[ J : : : s
A ° @ L] * 1}  C = @
mmm: g e

Observed state

To develop an effective PD controller, we need to accurately characterize the environment states
(Pout, Phout) by differentiating the effects of HPA imperfections and interference signals.




Reinforcement Learning Approach

(s) A S is a state

O The value (utility) of a state s — V*(s): expected utility /3
starting in s and acting optimally S
O The value (utility) of a g-state(s, a) — Q*(s, a): (S’ Cl) - (S’ a) Is a q-state
expected utility starting out having taken action a from
state s and (thereafter) acting optimally o

O The optimal policy—m*(s): optimal action from state s (S a S') s a S') i 3 transition
) ) ) )
)
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Reinforcement Learning Approach

(s) = m;\xZ T(s,a,s")[R(s,a,s") + yV*(s")]

O Simplified Bellman updates calculate V for a fixed 1 Q-Learning: sample-based Q-value iteration

policy, Quer1(5,@) < ) T(5,m(s), 5" [RGs,m(s),5) +y max Qu(s, ")

Vo(s) =0 7 : : :
U Learn Q(s,as values as iterations continue,
Vi1 (s) « z T(s,m(s),s") [R(s,m(s),s") +yV*(s")] = Receive a sample (s,a,s")
s’ = Consider your old estimate:Q(s, a)

= This approach fully exploited the connections " Consider your new Sample,e5timate‘ ,
between the states sample = R(s,a,s") +ymax((s,a)
" We need transition T and reward R = |ncorporate the new estimate into a running average:
Q(s,a) « (1 —a)Q(s,a) + a[sample] 17




Reinforcement Learning Approach

O Action a: the actions the PD takes is to adjust (increase or decrease by certain range) of the 8 parameters of the
extended Saleh’s model, namely (ay, by, @y, Bo) and (a4, b1, a4, B1).

= The first four parameters directly correspond to the AM-AM relations, the AM-PM are characterized based on
these 8 parameters together.

L States s: the observable (at least partially) status of the PD Controller’s relation with the environment, defined as 2-
dimensional continuous states.

= The feasible set of each parameter is discretized for the algorithm implementation.

O Rewards r: Given “Input Power” (or Pin) and “Input Phase” (or Phasein), we use the distance between estimated and
measured output power and phase of the HPA as the rewards function.

2
" Ap: \/(POUtobj — Poutmea) State: s

Reward: r

2

= Regarding the reward function definition, it can be further simplified by analyzing the characteristics of PD and
HPA.

Agent

Actions: a




PD-Scenario 1: Noise Exists between the PD and HPA

» Noise exists between the PD and HPA

» The Noise is characterized based on E}, /N,

» Machine learning approach is deployed to update
the PD parameter set (ag, by, &g, Bo, @1, b1, @1, b1)

Signal of
Interest (SOI)
Transmitter

ap = 10.956 by = 0.1930 ay = 15.2576 B, = 3.4007
a, = 0.2261 b1 = 0.2354 a; = 61.4107 B, = 1.0755
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PD-Scenario 1: PD Parameter Set Learning Process
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PD-Scenario 2: Partial Time interference

Bit Error rate

Bit Error rate
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Conclusions and Future Work

» Summaries/Conclusions:

Designed a complete SATCOM PD solution with on-ground system modifications to satisfy low-
cost demand.

Mathematically modelled HPA to achieve an excellent agreement with actual AM-AM and AM-
PM data, and developed an effective physics-based PD model accordingly.

Successfully develop a machine-learning based PD controller, which is able to intelligently adjust
PD’s parameters in the presence of interference signals.

Assessed BER and spectral regrowth performance of the developed PD by adopting a simplified
NPR transponder simulation model.

The system performance is significantly improved based on our simulation results.

= Future Work:

Develop a database to capture all possible HPA distortions in different operating conditions and
associated MODCOD performance.

Implement the PD design on the hardware.



aaaaa ngiyabonga
b aﬂkﬂmﬂﬂm .« (BSeKkLr ederim s

V|60ﬂ:(a|:lela| lva maki nlaonualam aﬂ Je misaola matnn iy gl0es ' =
[a c | a S = a:aan;;nu?ana.
e duerﬂ ied 2M0CNChakKeram

i mbnm neku" — chnmakalnulmun aces sulnay_:, U[alhh m3|lh a al
SUk” 3 kﬂ[] khUﬂ kmﬂ "_U 3”03[[] = dakulemg""“m

= " 13 emm
Ub" 23 "a"s ] rahmel 3 dmlch anyadagly 9 iy g Mepcn

e Mercl

1Y)
b ]
=2
Y]
=
o V]
V]

dh Ieal

x—

N 0racie =

nanni

yallalaa ﬂaﬂﬂ"
<2 fyala E
= mam i
Koszonom
murakoze :
lenki =

akyn dankon aci0

k

4,; rlldl
rahm



