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Introduction

3
Simulated HPA AM-AM and AM-PM curves for X band Signal

• The transponders are equipped with high power amplifiers (HPAs), which, unfortunately, cause nonlinear distortions to
the transmitted signal, since HPAs normally operate close to or at saturation, so as to maximize power efficiency.

• This nonlinear distortion can be characterized as amplitude modulation-to-amplitude modulation (AM-AM), and
amplitude modulation-to-phase modulation (AM-PM) effects.

• AM-AM and AM-PM distortions cause interference signal non-recognizable.
• The conventional predistortion (PD) method cannot handle the non-linearization problem in the presence of

interferences.
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CONOPS	Description
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System CONOPS in the presence of interferences

To	linearize	satellite	transponder	in	the	presence	of	interferences

Satellite 1:
-interference attacks the uplink
(U/L) - This is the case of our
interest
-Case 1: The interference signal
does not cause AM-AM and
AM-PM distortion effects
-Case 2: The interference signal
power causes the HPA to
operate at saturation.

Satellite 2:
-interference attacks the
downlink (D/L) signal
-interference signal on the D/L
does not cause AM-AM and AM-
PM distortions and hence it is
not of our interest

Interference	Signal

Interference	
Signal

Interference	
Signal

Interference

Interference	#2Interference	#1



System	Model
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Proposed on-ground solution for near-term implementation

This	solution	only	requires	us	to	modify	the	configurations	of	the	hub	and	user	terminals,	which	can	achieve	the	goal	of	low	cost.

Out	of	Scope

• The on-ground PD is able to
correct the AM-AM and AM-
PM nonlinear distortions by
itself when the nonlinearity is
not caused by interference
signals.

• When interference causes
nonlinear distortion to the
HPA, the PD controller uses
machine learning technique to
adjust the parameters of the
PD, and send the correction
signal to the transmitter.

D/L	
Interference	

Signal

U/L	
Interference	

Signal
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Extended	Saleh’s	Model:	HPA	Modeling

Measured	AM-AM	characteristics	of	Ka-Band	HPA	with	
temperature	as	a	parameter

Measured	AM-PM	characteristics	of	Ka-Band	HPA	with	
temperature	as	a	parameter
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Extended Saleh’s Model was developed in order to accurately characterize a wide range of HPAs, including, L-/S-/X-
/Ku-/Ka-band HPAs. The Eight-parameter Model was selected to provide the required accuracy and minimum
processing time.

Saleh’s	model	has	been	proposed	for	characterizing	an	HPA’s	AM-AM	and	AM-PM	distortions	accurately.	The	extended	
model	is	designed	especially	for	travelling	wave	tube	(TWT)	and	/or	solid	high	power	amplifiers.		
The	complex	signals	𝑠(𝑡),	𝑥(𝑡),	and	𝑦(𝑡) can	be	written	as	follows.

𝑠 𝑡 = 𝜌) * 𝑒,-. /
𝑥 𝑡 = 𝜌0 * 𝑒,-1 /

𝑦 𝑡 = 𝜌2 * 𝑒,-3 /

where	𝜌)(*),	𝜌0(*),	𝜌2(*),	and	𝜃)(*),	𝜃0(*),	𝜃2(*) are	the	amplitude	
and	phase	of	the	complex	signals	𝑠(𝑡),	𝑥(𝑡),	and	𝑦(𝑡),	respectively.	
We	let	𝑀 𝜌0 * and	Φ 𝜌0 * be	the	normalized	AM-AM	and	AM-
PM	responses	of	the	HPA	due	to	the	input	signal	𝑥(𝑡),	then	we	
have	

𝑦 𝑡 = 𝑀 𝜌0 * 𝑒,(-1 / 78 91 / )

Then,	the	original	Saleh’s	model	is	extended	for	HPA	by	including	
eight	extra	parameters	(𝑎;, 𝑎=, 𝑏;,	and	𝑏=,	𝛼;,	𝛼=,	𝛽; and	𝛽=),	
resulting	in	the	following	generalized	equations	for	𝑀 𝜌0 * and	
Φ 𝜌0 * as	follows.

𝑀 𝜌0 * ≡ 𝜌2 * =
𝛼;𝜌0 *

𝑎; + 𝛽; 𝜌0 * + 𝑏;
D

Φ 𝜌0 * =
𝛼=𝜌0 *

D

𝑎= + 𝛽= 𝜌0 * + 𝑏=
D

We	can	write	exp(𝑗𝜃0 * ) as

𝑒,-1 / =
𝑥(𝑡)
𝜌0 *

𝑦(𝑡) can	be	further	obtained	as

𝑦 𝑡 =
𝛼;𝑥(𝑡)

𝑎; + 𝛽; 𝜌0 * + 𝑏;
D 𝑒

,
IJ91 /

K

LJ7MJ 91 / 7NJ
K

It	is	obvious	that	the	ideal	PD	output	for	a	given	input	
𝑠(𝑡) is:

𝑥 𝑡

= 𝑠(𝑡)
𝑎; + 𝛽; 𝜌0 * + 𝑏;

D

𝛼;
𝑒
O,

IJ91 /
K

LJ7MJ 91 / 7NJ
K

Extended	Saleh’s	Model:	HPA	Modeling 𝑠(𝑡) 𝑥(𝑡) 𝑦(𝑡)



Extended	Saleh’s	Model:	HPA	Modeling

Work flow of achieving unknown parameters using curve-fitting algorithm
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Extended	Saleh’s	Model:	HPA	Modeling

Normalized	output	power	vs.	normalized	input	power	
for	the	GBS	HPA

Output	phase	vs.	normalized	input	power	
for	the	GBS	HPA

𝒒𝑨𝑴 = 𝑎;, 𝑏;, 𝛼;,	𝛽; = 3.6407, 0.3063, 11.1163, 4.2947 ;
	𝒒𝑷𝑴= 𝑎=, 𝑏=, 𝛼=,	𝛽= = 0.4978, 0.1273, 74.6172, 1.0879 .	
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Extended	Saleh’s	Model:	PD	Modeling

Input	and	output	phase	relationship	of	the	PD	model	
using	extension	of	Saleh’s	model	for	the	GBS	HPA

𝜌_`

=
𝛼; − 2𝑏;𝛽;𝜌0 * − 𝛼;D − 4𝛽;𝜌0 * (𝑎;𝜌0 * + 𝑏;𝛼;)

� 	

2𝛽;𝜌0 *
D 𝜌0 * ≤ 1

1 𝜌0 * > 1

												

	𝜌2 * =	𝜌_` e 𝜌0 *

𝜃_` = −
𝛼=𝜌2 *

D

𝑎= + 𝛽= 𝜌2 * + 𝑏=
D

Input	and	output	power	relationship	of	the	PD	model	using	
extension	of	Saleh’s	model	for	the	GBS	HPA

Extended	Saleh’s	Model	of	PD,	on	which	the	machine	learning	based	
PD	designed	is	developed.	 12
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BER	Performance	Evaluation
q Unfiltered	QPSK	for	assessing	the	PD’s	impacts	on	the	waveform	at	saturation		

BER performance for unfiltered QPSK signal passing through a transponder with and without PD at Ka-band
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Machine	Learning-based	PD	Controller

Reinforcement	learning	(RL)	is	the	subfield	of	machine	learning	concerned	with	decision	making	and	
optimized	control.	It	studies	how	an	agent	can	learn	and	adapt	to	achieve	desired	goals	in	a	complex	and	uncertain	
environments.

State	
representation

SATCOM	environmentPD	controller:	neural	
network	agent

Actions

Observed	state

Rewards

To	develop	an	effective	PD	controller,	we	need	to	accurately	characterize	the	environment	states	
(Pout,	Phout)	by	differentiating	the	effects	of	HPA	imperfections	and	interference	signals.		



(𝑠, 𝑎, 𝑠’) is	a	transition

a

(𝑠)

s’

(𝑠, 𝑎)

𝑠, 𝑎, 𝑠’

𝑠 is	a	state

(𝑠, 𝑎) is	a	𝑞-state

q The	value	(utility)	of	a	state	𝑠 − 𝑉∗(𝑠):	expected	utility	
starting	in	𝑠 and	acting	optimally

q The	value	(utility)	of	a	q-state 𝑠, 𝑎 − 𝑄∗(𝑠, 𝑎):		
expected	utility	starting	out	having	taken	action	a	from	
state	𝑠 and	(thereafter)	acting	optimally

q The	optimal	policy−𝜋∗(𝑠):	optimal	action	from	state	s

Reinforcement	Learning	Approach

16



p(s)

s

s,	p(s)

s, p(s),s’
s’

§ This	approach	fully	exploited	the	connections	
between	the	states

§ We	need	transition	𝑇 and	reward	𝑅

q Q-Learning:	sample-based	Q-value	iteration

q Learn	Q(s,a)	values	as	iterations	continue,
§ Receive	a	sample	(𝑠, 𝑎, 𝑠′)
§ Consider	your	old	estimate:𝑄(𝑠, 𝑎)
§ Consider	your	new	sample	estimate:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅 𝑠, 𝑎, 𝑠r + 𝛾max
Lr

𝑄(𝑠, 𝑎′)
§ Incorporate	the	new	estimate	into	a	running	average:

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼[𝑠𝑎𝑚𝑝𝑙𝑒]

q Simplified	Bellman	updates	calculate	V	for	a	fixed	
policy,

Reinforcement	Learning	Approach

𝑉∗ 𝑠 = max
L
𝑄∗(𝑠, 𝑎)

𝑄∗ 𝑠, 𝑎 =y𝑇 𝑠, 𝑎, 𝑠r 𝑅 𝑠, 𝑎, 𝑠r + 𝛾𝑉∗(𝑠r)
�

)z

𝑉∗ 𝑠 = max
L
y𝑇 𝑠, 𝑎, 𝑠r 𝑅 𝑠, 𝑎, 𝑠r + 𝛾𝑉∗(𝑠r)
�

)z

𝑉;{ 𝑠 = 0

𝑉|7={ (𝑠) ←y𝑇 𝑠, 𝜋 𝑠 , 𝑠r
�

)z
𝑅 𝑠, 𝜋(𝑠), 𝑠r + 𝛾𝑉∗(𝑠r)

𝑄|7=(𝑠, 𝑎) ←y𝑇 𝑠, 𝜋 𝑠 , 𝑠r
�

)z
𝑅 𝑠, 𝜋(𝑠), 𝑠r + 𝛾max

Lz
𝑄|(𝑠r, 𝑎r)

17



Reinforcement	Learning	Approach

q Action 𝒂: the actions the PD takes is to adjust (increase or decrease by certain range) of the 8 parameters of the
extended Saleh’s model, namely (𝑎;, 𝑏;, 𝛼;,	𝛽;) and (𝑎=, 𝑏=, 𝛼=,	𝛽=).
§ The first four parameters directly correspond to the AM-AM relations, the AM-PM are characterized based on

these 8 parameters together.
q States 𝒔: the observable (at least partially) status of the PD Controller’s relation with the environment, defined as 2-

dimensional continuous states.
§ The feasible set of each parameter is discretized for the algorithm implementation.

q Rewards r: Given “Input Power” (or Pin) and “Input Phase” (or Phasein), we use the distance between estimated and
measured output power and phase of the HPA as the rewards function.

§ ∆�= 𝑃��*��� − 𝑃��*���

D�

§ ∆��L)�= 𝑃ℎ𝑎𝑠𝑒��*��� − 𝑃ℎ𝑎𝑠𝑒��*���

D�
.

§ Regarding the reward function definition, it can be further simplified by analyzing the characteristics of PD and
HPA.

18



Ø Noise	exists	between	the	PD	and	HPA
Ø The	Noise	is	characterized	based	on	𝐸N/𝑁;
Ø Machine	learning	approach	is	deployed	to	update	

the	PD	parameter	set	(𝑎;, 𝑏;, 𝛼;, 𝛽;, 𝑎=, 𝑏=, 𝛼=, 𝛽=)

PD-Scenario	1:	Noise	Exists	between	the	PD	and	HPA

The	BER	
Improvement

𝑎; = 10.956 𝑏; = 0.1930 𝛼; = 15.2576 𝛽; = 3.4007
𝑎= = 0.2261 𝑏1 = 0.2354 𝛼= = 61.4107 𝛽= = 1.0755 Noise	between	PD	and	HPA

19



𝑎; = 10.956 𝑏; = 0.1930 𝛼; = 15.2576 𝛽; = 3.4007
𝑎= = 0.2261 𝑏1 = 0.2354 𝛼= = 61.4107 𝛽= = 1.0755

PD-Scenario	1:	PD	Parameter	Set	Learning	Process

Learning	
Process

Parameter	
Tuning

20



PD-Scenario	2:	Partial	Time	interference

Active	Rate=0.9

Active	Rate=0.2

𝐸N
𝑁;

= 1
𝐸N
𝑁;

= 5
𝐸N
𝑁;

= 9 21



Interference
Active	Rate	=0.9Interference

Active	Rate	=0.9

PD-Scenario	2:	Partial	Time	interference

Interference	
Active	Rate	

=0.2
Interference	

Active	Rate	=0.2

𝑎; = 3.5188 𝑏; = 0.2621
𝛼; = 4.9642 𝛽; = 1.0252
𝑎= = 0.8371 𝑏1 = 0.8371
𝛼= = 201.77 𝛽= = 4.7948

𝑎; = 12.5052 𝑏; = 0.3661
𝛼; = 19.9163 𝛽; = 4.6128
𝑎= = 0.7536 𝑏1 = 0.0570
𝛼= = 154.5747 𝛽= = 3.5663
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Conclusions	and	Future	Work	

§ Summaries/Conclusions: 
§ Designed a complete SATCOM PD solution with on-ground system modifications to satisfy low-

cost demand.
§ Mathematically modelled HPA to achieve an excellent agreement with actual AM-AM and AM-

PM data, and developed an effective physics-based PD model accordingly.
§ Successfully develop a machine-learning based PD controller, which is able to intelligently adjust

PD’s parameters in the presence of interference signals.
§ Assessed BER and spectral regrowth performance of the developed PD by adopting a simplified

NPR transponder simulation model.
§ The system performance is significantly improved based on our simulation results.

§ Future Work: 
§ Develop a database to capture all possible HPA distortions in different operating conditions and 

associated MODCOD performance. 
§ Implement the PD design on the hardware. 
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