
Spiking Neural Network for
Asset Allocation Implemented
Using The TrueNorth System

June 25, 2019

Chris Yakopcic (UD), Nayim Rahman (UD), Tanvir
Atahary (UD), Md. Zahangir Alom (UD), Tarek Taha (UD),
Alex Beigh (UDRI), Scott Douglass (711 HPW)

C. Yakopcic Spiking M by N 2/20

CECEP Architecture

Name Specification

Raining IF Implication.explanation = Raining
THEN Implication.evidence.Ground.moisture = Wet
AND Implication.evidence.Sky.visibility = Cloudy

Broken Pipe IF Implication.explanation = BrokenPipe
THEN Implication.evidence.Ground.moisture = Wet

OR
(Implication.evidence.Sky.visibility = Clear
AND
NOT Implication.evidence.Ground.moisture = Dry)

Dry Ground IFF NOT (Implication.explanation = Raining
OR

Implication.explanation = BrokenPipe)
THEN Implication.evidence.Ground.moisture = Dry

Wet Ground IFF Implication.evidence.Ground.moisture = Wet
THEN Implication.explanation = Raining

OR
Implication.explanation = BrokenPipe

Event Output Streams
IO “Adapters”

• The CDO is the decision
making engine within the
CECEP architecture

• These very simple examples
quickly become very complex
in realistic systems

 Billions of possible outcomes

C. Yakopcic Spiking M by N 3/20

Objective

• Optimized resource allocation is extremely computationally expensive

• We need low SWaP alternatives, large problems are currently prohibitively
expensive to solve.

• This is done using a series of spiking neurons that
fire according to the most logical vehicle
assignment options

• This work covers a MATLAB implementation of
the spiking neuron based algorithm

Vehicle 1 Goes to Target 1

Vehicle 2 Goes to Target 3

Vehicle 3 Goes to Target 4

Vehicle 4 Goes to Target 3

Vehicle 5 Goes to Target 5

Vehicle 6 Goes to Target 8

Vehicle 7 Goes to Target 5

Vehicle 8 Goes to Target 7

True North Spiking Output

C. Yakopcic Spiking M by N 4/20

Objective

• Optimized resource allocation is extremely computationally expensive

• We need low SWaP alternatives, large problems are currently prohibitively
expensive to solve.

• This is done using a series of spiking neurons that
fire according to the most logical vehicle
assignment options

• This work covers a MATLAB implementation of
the spiking neuron based algorithm

Allocation
Problem Size

Number of
Possible

Solutions

2 × 2 9

4 × 4 625

6 × 6 117,649

8 × 8 43,046,721

10 × 10 25,937,424,601

C. Yakopcic Spiking M by N 5/20

Outline

• CECEP Applications

 M by N Asset Allocation in SNNs

 Method

 Algorithm

 TrueNorth Implementation

 Results in TrueNorth

 Latest Implementation and Results on Loihi

C. Yakopcic Spiking M by N 6/20

Neuron Model

• Single neuron holds connection between

one vehicle and one target

 Capable of allocating N vehicles for M

separate targets using N×M neurons

• Weight Parameters

 TTA: Time to the target

 Priority: Necessity of reaching target

 TOT: Hold time for vehicle once target is reached

 Probability of Success: Likelihood that a target

will be completed by a certain vehicle

 TTC = TOT + TTA

• Control Parameters

 CM: Connectivity matrix hold vehicle-target

compatibility

 τ: A vehicle can only be assigned to one target

 β: Penalize (but do not stop) multiple vehicles from

reaching a single target

n11

Γ11

v11

τ1β1

z11

n12

Γ12

v12

z12

n13

Γ13

v13

z13

n21

Γ21

v21

z21

n22

Γ22

v22

z22

n23

Γ23

v23

z23

n31

Γ31

v31

z31

n32

Γ32

v32

z32

n33

Γ33

v33

z33

CM11

τ1β2CM12

τ1β3CM13

τ2β1CM21

β2CM22

τ2
τ2β3CM32

τ3β3CM33

τ3β2CM32

τ3β1CM31

Vehicle 1

Vehicle 2

Vehicle 3

Target 2Target 1 Target 3

C. Yakopcic Spiking M by N 7/20

Algorithm Block Diagram

• Flow of inputs and outputs for the
algorithm

 Spike accumulation is proportional to
a weighted sum of priority, success,
and time

 Spikes occur depending on
compatibility, as well as vehicle and
target status

 a) Base Accumulation Rate

 b) Control Variables

 c) Neuron Grid

 d) Allocation Result

Tij=1-
TTCij

max(TTCij,i)

Priority (Pj)

Success (Sj)

TTCij

TOTj

TTAij

Constraint
Handler

. . .

. . .

. . .

. . .

+

+

Spike Generator
+

Accumulation
Modulator

Isolated Neuron Grid

wS

wT

wP

Base
Accumulation

Rate (Γij)

n11
Γ11

n12
Γ12

n1M
Γ1M

. . .
n21

Γ21

n22
Γ22

n2M
Γ2M

. . .
n11

ΓN1

nN2
ΓN2

nNM
ΓNM

Connectivity
Matrix (Cmij)

Spike Inputs
v11, …, v1M

…
…

…
. . .

v21, …, v2M

vN1, …, vNM

Vehicle
Control (τi)

Task Control
(βj)

Spiking Output

Resulting
Allocation

z11, …, zN1 z12, …, zN2 z1M, …, zNM...

Control
Variables

a

b

c

d

C. Yakopcic Spiking M by N 8/20

Simplified Algorithm Block Diagram

• Flow of inputs and outputs for the
algorithm

 Spike accumulation is proportional to
a weighted sum of priority, success,
and time

 Spikes occur depending on
compatibility, as well as vehicle and
target status

Constraint
Handler

. . .

. . .

. . .

. . .

Spike
Layer

Isolated Neuron Grid

n11
Γ11

n12
Γ12

n1M
Γ1M

. . .
n21

Γ21

n22
Γ22

n2M
Γ2M

. . .
n11

ΓN1

nN2
ΓN2

nNM
ΓNM

Connectivity
Matrix (Cmij)

Spike Inputs
v11, …, v1M

…
…

…
. . .

v21, …, v2M

vN1, …, vNM

Vehicle
Control (τi)

Target
Control (βj)

Spiking Output

Resulting
Allocation

z11, …, zN1 z12, …, zN2 z1M, …, zNM...

Control
Variables

c

Bias Input

C. Yakopcic Spiking M by N 9/20

Example Allocation

Constraint
Handler

. . .

. . .

. . .

. . .

Spike
Layer

Isolated Neuron Grid

n11
Γ11

n12
Γ12

n1M
Γ1M

. . .
n21

Γ21

n22
Γ22

n2M
Γ2M

. . .
n11

ΓN1

nN2
ΓN2

nNM
ΓNM

Connectivity
Matrix (Cmij)

Spike Inputs
v11, …, v1M

…
…

…
. . .

v21, …, v2M

vN1, …, vNM

Vehicle
Control (τi)

Target
Control (βj)

Spiking Output

Resulting
Allocation

z11, …, zN1 z12, …, zN2 z1M, …, zNM...

Control
Variables

c

Bias Input

Connectivity Matrix Response

C. Yakopcic Spiking M by N 10/20

Example Allocation

Constraint
Handler

. . .

. . .

. . .

. . .

Spike
Layer

Isolated Neuron Grid

n11
Γ11

n12
Γ12

n1M
Γ1M

. . .
n21

Γ21

n22
Γ22

n2M
Γ2M

. . .
n11

ΓN1

nN2
ΓN2

nNM
ΓNM

Connectivity
Matrix (Cmij)

Spike Inputs
v11, …, v1M

…
…

…
. . .

v21, …, v2M

vN1, …, vNM

Vehicle
Control (τi)

Target
Control (βj)

Spiking Output

Resulting
Allocation

z11, …, zN1 z12, …, zN2 z1M, …, zNM...

Control
Variables

c

Bias Input

Vehicle Control Response

C. Yakopcic Spiking M by N 11/20

Example Allocation

Constraint
Handler

. . .

. . .

. . .

. . .

Spike
Layer

Isolated Neuron Grid

n11
Γ11

n12
Γ12

n1M
Γ1M

. . .
n21

Γ21

n22
Γ22

n2M
Γ2M

. . .
n11

ΓN1

nN2
ΓN2

nNM
ΓNM

Connectivity
Matrix (Cmij)

Spike Inputs
v11, …, v1M

…
…

…
. . .

v21, …, v2M

vN1, …, vNM

Vehicle
Control (τi)

Target
Control (βj)

Spiking Output

Resulting
Allocation

z11, …, zN1 z12, …, zN2 z1M, …, zNM...

Control
Variables

c

Bias Input

Target Control Response

C. Yakopcic Spiking M by N 12/20

TrueNorth Implementation

• Circuits display the 2 by 2
scenario

 Simple example mainly for
demonstration

• 9 Inputs

 1 Uniform Spiking

 4 Vehicle Control

 4 Task Control

• 12 Outputs

 4 Vehicle Control Send

 4 Task Control Send

 4 Final Outputs

 3 Duplications of the same circuit

Spiking Input

Input to

Suppress

Vehicles

Input to Stop

Vehicles

= wj

= wj/2

= -255

Spiking Input

S1 S2 S3 S4

Neuron Accumulation

Neuron Accumulation with Control Variables

C. Yakopcic Spiking M by N 13/20

TrueNorth Allocation Results

• Allocation results show which
neuron numbers are spiking at the
end of an allocation execution

• 2 by 2

 Neurons: 1 4

 Result [1 2]

• 4 by 4

 Neurons: 4 5 9 15

 Result [4 1 1 3]

(a)

(b)

(c)

(d)

(e)

In
p

u
t

2
 b

y
 2

 A
ll

o
ca

ti
o
n

4
 b

y
4

 A
ll

o
ca

ti
o
n

C. Yakopcic Spiking M by N 14/20

TrueNorth Allocation Results

• Allocation results show which neuron
numbers are spiking at the end of an
allocation execution

• 6 by 6

 Result [2 4 1 5 3 3]

• 8 by 8

 Result [1 3 4 3 5 8 5 7]

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

In
p

u
t

6
b

y
 6

 A
ll

o
ca

ti
o
n

8
b

y
 8

 A
ll

o
ca

ti
o
n

C. Yakopcic Spiking M by N 15/20

Algorithm Comparison

• The best allocation for each case was determined using a GPU exhaustive
search

• The table compares this result to the approximate result obtained from the
Loihi spiking system

Exhaustive Search Using K80

GPU
TrueNorth Spiking System

Allocation

Size

Baseline

CDO

Reward

Baseline CDO

Result

Effective

Reward
Allocation Result Answer Rank

Answer

Percentile

3×3 18.8703 [2 1 1] 18.4807 [2 1 2] 2 of 64 98.44%

4×4 11.377 [4 1 1 3] 11.377 [4 1 1 3] 1 of 625 100%

5×5 22.6219 [1 5 2 4 1] 22.6203 [1 5 2 3 1] 2 of 7776 99.99%

6×6 31.2628 [2 4 1 5 3 3] 31.2628 [2 4 1 5 3 3] 1 of 117649 100%

7×7 48.448 [4 2 2 6 5 6 7] 40.6019 [4 6 4 2 5 5 7]
6847 of

2.09M
99.67%

8×8 40.8782 [1 3 4 7 5 3 6 8] 39.1283 [1 3 4 3 5 8 5 7]
111 of

43.0M
~100%

C. Yakopcic Spiking M by N 16/20

Timing Comparison

• Runtime comparison between the exhaustive search and spiking system

• Solution space on an asset allocation problem grows with problem size

 Neuron utilization grows at a much smaller rate

Allocation Size
CDO Search Time

(GPU)

TrueNorth

Execution Time

TrueNorth

System

Speedup

3×3 224 ms 47 ms 4.76×

4×4 231 ms 53 ms 4.36×

5×5 233 ms 52 ms 4.48×

6×6 234 ms 43 ms 5.44×

7×7 269 ms 56 ms 4.80×

8×8 955 ms 40 ms 23.88×

Allocation Problem
Size

Number of
Possible Solutions

Number of Acc.

Neurons

2 × 2 9 4

4 × 4 625 16

6 × 6 117,649 36

8 × 8 43,046,721 64

10 × 10 25,937,424,601 100

C. Yakopcic Spiking M by N 17/20

• Loihi implementation of the same algorithm

• Loihi photo shows portable USB stick

 This work was performed via remote login

Accum. Rate Decay

Slowest
Accum.

Rate

Neuron Grid Accumulations

Control Variable Spiking Layer

Resulting Allocation

C. Yakopcic Spiking M by N 18/20

Spiking System Comparison

• Loihi demonstrates significant speedup of TrueNorth

 Mainly due to shorter cycle time and non uniform intervals

Allocation

Size

CDO Search

Time (GPU)

Loihi Execution

Time

Loihi System

Speedup

TrueNorth

Execution Time

TrueNorth

System Speedup

3×3 224 ms 0.312 ms 717× 47 ms 4.76×

4×4 231 ms 0.384 ms 601× 53 ms 4.36×

5×5 233 ms 0.319 ms 730× 52 ms 4.48×

6×6 234 ms 0.414 ms 565× 43 ms 5.44×

7×7 269 ms 0.428 ms 629× 56 ms 4.80×

8×8 955 ms 0.737 ms 1296× 40 ms 23.88×

C. Yakopcic Spiking M by N 19/20

SWaP Comparison

Trad. CPU / GPU System Spiking

Systems

Ratio

Size 2240 in3 24 in3 93×

Weight 20 lb 0.5 lb 40×

Power 500 W < 70 mW 7142×

Accuracy 100% 99% -

• General System Comparison

 Exhaustive/Traditional vs. Embedded/Approximate

 Approximate solution leads to dramatic increase in efficiency

 In general, this result shows how the proposed algorithm enables portability of inference
algorithms

C. Yakopcic Spiking M by N 20/20

Next Steps

• Asset Allocation
 More complete algorithm comparison

 Study of maximum scalability

 Comparison of methods for large scale allocation problems

• Loihi
 Energy Benchmark

 Maximum Scalability

