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CECEP Architecture

Name Specification

Raining IF Implication.explanation = Raining
THEN Implication.evidence.Ground.moisture = Wet
AND Implication.evidence.Sky.visibility = Cloudy

Broken Pipe IF Implication.explanation = BrokenPipe
THEN Implication.evidence.Ground.moisture = Wet

OR
(Implication.evidence.Sky.visibility = Clear
AND
NOT Implication.evidence.Ground.moisture = Dry)

Dry Ground IFF NOT (Implication.explanation = Raining
OR

Implication.explanation = BrokenPipe)
THEN Implication.evidence.Ground.moisture = Dry

Wet Ground IFF Implication.evidence.Ground.moisture = Wet
THEN Implication.explanation = Raining

OR
Implication.explanation = BrokenPipe

Event Output Streams
IO “Adapters”

• The CDO is the decision 
making engine within the 
CECEP architecture

• These very simple examples 
quickly become very complex 
in realistic systems

 Billions of possible outcomes
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Objective

• Optimized resource allocation is extremely computationally expensive

• We need low SWaP alternatives, large problems are currently prohibitively 
expensive to solve.

• This is done using a series of spiking neurons that                                               
fire according to the most logical vehicle                                              
assignment options

• This work covers a MATLAB implementation of                                                 
the spiking neuron based algorithm

Vehicle 1 Goes to Target 1

Vehicle 2 Goes to Target 3

Vehicle 3 Goes to Target 4

Vehicle 4 Goes to Target 3

Vehicle 5 Goes to Target 5

Vehicle 6 Goes to Target 8

Vehicle 7 Goes to Target 5

Vehicle 8 Goes to Target 7

True North Spiking Output
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Objective

• Optimized resource allocation is extremely computationally expensive

• We need low SWaP alternatives, large problems are currently prohibitively 
expensive to solve.

• This is done using a series of spiking neurons that                                               
fire according to the most logical vehicle                                              
assignment options

• This work covers a MATLAB implementation of                                                 
the spiking neuron based algorithm

Allocation 
Problem Size

Number of 
Possible 

Solutions

2 × 2 9

4 × 4 625

6 × 6 117,649

8 × 8 43,046,721

10 × 10 25,937,424,601
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Outline

• CECEP Applications

 M by N Asset Allocation in SNNs

 Method

 Algorithm

 TrueNorth Implementation

 Results in TrueNorth

 Latest Implementation and Results on Loihi
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Neuron Model

• Single neuron holds connection between 

one vehicle and one target

 Capable of allocating N vehicles for M 

separate targets using N×M neurons

• Weight Parameters

 TTA: Time to the target

 Priority: Necessity of reaching target

 TOT: Hold time for vehicle once target is reached

 Probability of Success: Likelihood that a target 

will be completed by a certain vehicle

 TTC = TOT + TTA

• Control Parameters

 CM: Connectivity matrix hold vehicle-target 

compatibility

 τ: A vehicle can only be assigned to one target

 β: Penalize (but do not stop) multiple vehicles from 

reaching a single target
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Algorithm Block Diagram

• Flow of inputs and outputs for the 
algorithm

 Spike accumulation is proportional to 
a weighted sum of priority, success, 
and time

 Spikes occur depending on 
compatibility, as well as vehicle and 
target status

 a) Base Accumulation Rate

 b) Control Variables

 c) Neuron Grid

 d) Allocation Result
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Simplified Algorithm Block Diagram

• Flow of inputs and outputs for the 
algorithm

 Spike accumulation is proportional to 
a weighted sum of priority, success, 
and time

 Spikes occur depending on 
compatibility, as well as vehicle and 
target status
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Example Allocation
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Example Allocation
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Example Allocation
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TrueNorth Implementation

• Circuits display the 2 by 2 
scenario

 Simple example mainly for 
demonstration

• 9 Inputs

 1 Uniform Spiking

 4 Vehicle Control

 4 Task Control

• 12 Outputs

 4 Vehicle Control Send

 4 Task Control Send

 4 Final Outputs

 3 Duplications of the same circuit

Spiking Input

Input to 

Suppress 

Vehicles

Input to Stop 

Vehicles

= wj

= wj/2

= -255

Spiking Input

S1 S2 S3 S4

Neuron Accumulation

Neuron Accumulation with Control Variables
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TrueNorth Allocation Results

• Allocation results show which 
neuron numbers are spiking at the 
end of an allocation execution

• 2 by 2

 Neurons: 1 4

 Result [1 2]

• 4 by 4

 Neurons: 4 5 9 15

 Result [4 1 1 3]
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TrueNorth Allocation Results

• Allocation results show which neuron 
numbers are spiking at the end of an 
allocation execution

• 6 by 6

 Result [2 4 1 5 3 3]

• 8 by 8

 Result [1 3 4 3 5 8 5 7]
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Algorithm Comparison

• The best allocation for each case was determined using a GPU exhaustive 
search

• The table compares this result to the approximate result obtained from the 
Loihi spiking system

Exhaustive Search Using K80 

GPU
TrueNorth Spiking System

Allocation 

Size

Baseline 

CDO 

Reward

Baseline CDO 

Result

Effective 

Reward
Allocation Result Answer Rank

Answer 

Percentile

3×3 18.8703 [2 1 1] 18.4807 [2 1 2] 2 of 64 98.44%

4×4 11.377 [4 1 1 3] 11.377 [4 1 1 3] 1 of 625 100%

5×5 22.6219 [1 5 2 4 1] 22.6203 [1 5 2 3 1] 2 of 7776 99.99%

6×6 31.2628 [2 4 1 5 3 3] 31.2628 [2 4 1 5 3 3] 1 of 117649 100%

7×7 48.448 [4 2 2 6 5 6 7] 40.6019 [4 6 4 2 5 5 7]
6847 of

2.09M
99.67%

8×8 40.8782 [1 3 4 7 5 3 6 8] 39.1283 [1 3 4 3 5 8 5 7]
111 of

43.0M
~100%
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Timing Comparison

• Runtime comparison between the exhaustive search and spiking system

• Solution space on an asset allocation problem grows with problem size

 Neuron utilization grows at a much smaller rate

Allocation Size
CDO Search Time 

(GPU)

TrueNorth

Execution Time

TrueNorth

System 

Speedup

3×3 224 ms 47 ms 4.76×

4×4 231 ms 53 ms 4.36×

5×5 233 ms 52 ms 4.48×

6×6 234 ms 43 ms 5.44×

7×7 269 ms 56 ms 4.80×

8×8 955 ms 40 ms 23.88×

Allocation Problem 
Size

Number of 
Possible Solutions

Number of Acc.

Neurons

2 × 2 9 4

4 × 4 625 16

6 × 6 117,649 36

8 × 8 43,046,721 64

10 × 10 25,937,424,601 100
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• Loihi implementation of the same algorithm

• Loihi photo shows portable USB stick

 This work was performed via remote login

Accum. Rate Decay

Slowest
Accum. 

Rate

Neuron Grid Accumulations

Control Variable Spiking Layer

Resulting Allocation
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Spiking System Comparison

• Loihi demonstrates significant speedup of TrueNorth

 Mainly due to shorter cycle time and non uniform intervals

Allocation 

Size

CDO Search 

Time (GPU)

Loihi Execution 

Time

Loihi System 

Speedup

TrueNorth

Execution Time

TrueNorth

System Speedup

3×3 224 ms 0.312 ms 717× 47 ms 4.76×

4×4 231 ms 0.384 ms 601× 53 ms 4.36×

5×5 233 ms 0.319 ms 730× 52 ms 4.48×

6×6 234 ms 0.414 ms 565× 43 ms 5.44×

7×7 269 ms 0.428 ms 629× 56 ms 4.80×

8×8 955 ms 0.737 ms 1296× 40 ms 23.88×
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SWaP Comparison

Trad. CPU / GPU System Spiking 

Systems

Ratio

Size 2240 in3 24 in3 93×

Weight 20 lb 0.5 lb 40×

Power 500 W < 70 mW 7142×

Accuracy 100% 99% -

• General System Comparison 

 Exhaustive/Traditional vs. Embedded/Approximate

 Approximate solution leads to dramatic increase in efficiency

 In general, this result shows how the proposed algorithm enables portability of inference 
algorithms
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Next Steps

• Asset Allocation 
 More complete algorithm comparison

 Study of maximum scalability

 Comparison of methods for large scale allocation problems

• Loihi
 Energy Benchmark

 Maximum Scalability


