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Cognitive Computing at UD

- Neuromorphic and Parallel Cognitive Systems
Laboratory

+ Memristor Devices, Circuits, and Systems
* Deep learning algorithms and applications
+ Medical imaging
+ Image understanding and enhancement
+ Cybersecurity

- Parallel algorithms for cognitive agents (with

AFRL)

+ Spiking neural network algorithms for
cognitive agents (with AFRL)

- Application development for spiking neural Unlver81ty Of Dayton Campus
processors: Intel Loihi and IBM TrueNorth
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CECEP Architecture

- The CDO 1s the decision
making engine within the
CECEP architecture

- These very simple examples
quickly become very complex
In realistic systems

- Billions of possible outcomes
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- Optimized resource allocation is extremely computationally expensive

- We need low SWaP alternatives, large problems are currently prohibitively
expensive to solve.

- This is done using a series of spiking neurons that
fire according to the most logical vehicle
assignment options

- This work covers a MATLAB implementation of
the spiking neuron based algorithm
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Outline

- CECEP Applications
- CDO Solving on a Confabulation Inspired Network

* Loihi Introduction
* Method
+ Algorithm
- Execution on Loihi
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Intel Loihi

- Loihi Spiking Processor

- Manycore Neurmorphic System
* 60 mm? chip
* 14 nm profess
+ About 1,000,000 neurons per chip
+ Capable of implementing
- Hierarchical connectivity
* Dendritic compartments
* Synaptic delays

+ Programmable synaptic learning rules
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Intel Loihi

S DAYION

- Loihi Spiking Processor

- Manycore Neurmorphic System
* 60 mm? chip
* 14 nm profess
+ About 1,000,000 neurons per chip
- USB stick system

- Extremely portable low power cognitive system
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Intel Loihi

]
. DAYTON

- Loihi Spiking Processor
* 60 mm? chip
* 14 nm profess
« About 1,000,000 neurons
+ Alternative Multichip System

+ We utilize a multichip architecture via remote login for this work
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Intel Loihi

- Loihi Spiking Processor

* Multicore routing

Loihi Chip Plot

Mike Davies et al., “Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning” IEEE Micro Jan./Feb. 2018
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Intel Loihi
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- Loihi Spiking Processor L0 * :
- Multicore routing x 3 ° a
Sy N

 Flexible Python user o :
interface handles low level :
routing d a

- Asynchronous O O B :
communication - ®\§ :

+ Low power design | A) o E R

* Spikes only occur when i O sa B 7
needed to propagate R s i :

information
Neuron to Neuron Routing

Mike Davies et al., “Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning” IEEE Micro Jan./Feb. 2018
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SWaP Comparison

- General System Comparison
- Exhaustive/Traditional vs. Embedded/Approximate

- Approximate solution leads to dramatic increase in efficiency

Trad. CPU / GPU System | Embedded | Ratio
System

Size 2240 in3 24 in?

Weight 20 Ib 0.5 1b 40%
Power 500 W 70 mW 7142X
Accuracy 100% 99%
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CDOs Using Confabulation

- The CDO 1s the decision making engine

within the CECEP architecture
- Example Ball CDO

+ Demonstration Level
« Small Scale

(a) If sport is baseball, then size is small

and color is white.

(b) If sport is basketball, then size is

large and color is orange.
(c) If size is small, then sport is
baseball and tennis.

C. Yakopcic
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IO “Adapters”

Event Output Streams

Event Cloud

( Pattern Matcher |
(Domain knowledge) ( Databases

Example CDO @ ball
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Real World CDO Example ]
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- Complexity quickly grows in CDO structure

- Solution space grows at a rapid exponential rate
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Fig. 2. A cognitive domain ontology capturing knowledge about track entities specified in RML.

T. Atahary, T. Taha, S. Douglass, “Hardware Accelerated Cognitively Enhanced Complex Event Processing”, 14th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, July, SNPD 2013.

C. Yakopcic

Spiking CDOs

13/18



UNIVERSITY of

Loihi Implementation
EE————————————— DAYTO

- Implement the Ball
CDO as a confabulation
ispired network
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Loihi Implementation

4, 6‘3% P o
- Implement the Ball %%/% @e,%/ @@W@«;% %, zv% @1@%
CDO as a confabulation cFp array = np.array([[0, %, {, Ef, 1, -1, 6, -1], small
mspired network [0, 6, , 1, 0, O, 0, 0], large

[1, @, 0, ©, -1, 1, O, 0], baseball
[0, 1, 0, 0, 0, 0, 1, @], basketball

[1, 6, -1, 0, 0, 0, @, 1], tennis
[-1, ©, 1, 0, 0, O, O, 0], white
[6, -1, 0, 1, 0, 0, O, O], orange
[-1, 0, 0, 0, 1, 06, 0, 0]]) green
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Loihi Implementation

. DAYTON
4
- Implement the Ball %, {?6%@:@4% SR
¥ : W %y Ry % Yy e
CDO as a confabulation CFD array = np.array([[e, o, 1, 0, 1, -1, O, -1], small
inspired network [6, ©, 0, 1, 0, O, 0, 0], large
[1, 0, 0, 0, =1, 1, O, @], baseball
[6, 1, @, 0, 0, 0, 1, 0], Dbasketball
- Sequencer block used to 1 o - 6.6, 1], tennis
change input in real [-1, 0, 0], white

0,
time g. g, 0], orange

, 0]]) green
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Spiking Result

- Results show three different example cases

- Inputs can change in real time according where bias 1s applied
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Next Steps

- Confabulation CDO
- Implement learning
+ Scalability Test
- Some aspects of the spiking network may cause size limitations
- Communication delay
- Negative accumulation (fixed in our most recent work)

- Loihi1
* Constraint Solving
* Energy / Timing Benchmark

- Next talk shows quantified results using these SNN systems for
asset allocation
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