

A Communication Channel Density Estimating Generative Adversarial Network

Aaron Smith and Joseph Downey NASA Glenn Research Center Cleveland, Ohio

Autoencoder-Based Communications Systems (ABCs)

Background:

- Recent advances in communication system design have applied deep learning to optimize the physical layer for arbitrary channels
- Promising approach to optimizing performance over channels with difficult analytic solutions

Motivation:

- Simplify the traditional communication system, reduce dependency on channel models
- Adapt to a changing environment, and optimize over the end-to-end system
- Generalize over hardware, medium, and waveform

Approximating Channel Gradients

- s, \hat{s} messages (bit sequences)
- x, y complex baseband symbols

- Backpropagation calculates loss gradients to update weights and biases
- Calculating transmitter updates requires a known channel function
- Ideally, an ABCs would optimize any channel
- NN approximation of a channel provides missing channel gradients

Training and Evaluating a Model

Black-box training

Approximates a distribution

Qualities of a Good Training Algorithm

- Accurate
 - > Statistical distance
 - > Qualitative analysis
- Robust
 - > Input distribution p(x)
 - > 'Difficult' channels
- Stable
 - > Converges to a solution
 - > Repeatable results

Training Demonstration 5M symbols / Random 64-QAM Input

Channel Response

Neural Network Response

Binned Difference

Channel Simulations

- "Channels" include all processes between modulation/demodulation
- Non-linear amplification and pulse shaping cause ISI
- Dispersive channels cause ISI
- Equalization more difficult in nonlinear channels
- Non-Gaussian noise

GAN Architecture

- Discriminator learns to classify real/fake channel responses
- 2. Stabilize training with VAE cycle (y-z-y)
- 3. Discourage mode collapse with latent regression (z-y-z)

Results

The GAN learned

- Arbitrary Inputs
 - > Amplifier amplitude/phase characteristics
 - > ISI distortions for high energy symbols
 - > Distortions specific to constellation
- Channel Parameters
- > Distortions specific to the RRC roll-off factor
- > Both high/low AWGN powers

Results Cont.

The GAN learned

- ISI due to group delay variation
- ISI from multipath model
- Non-Gaussian noise process

Conclusions

ABCs provide an end-to-end optimization, but gradients cannot be calculated by the transmitter. This can be circumvented by approximating the channel with a neural network. We provide a new GAN architecture for this purpose. We demonstrate the utility of our architecture by evaluating the GAN on channels that contain non-linearities, intersymbol interference, and non-Gaussian statistics.

Next steps include

- ABCs utilization of GAN architecture
- Lab demonstration