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Autoencoder-Based Communications Systems 
(ABCs)

Background:

• Recent advances in communication system design 
have applied deep learning to optimize the 
physical layer for arbitrary channels

• Promising approach to optimizing performance 
over channels with difficult analytic solutions

Motivation:

• Simplify the traditional communication system, 
reduce dependency on channel models

• Adapt to a changing environment, and optimize 
over the end-to-end system

• Generalize over hardware, medium, and 
waveform
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Approximating Channel Gradients

𝑠, Ƹ𝑠 − messages (bit sequences)
𝑥, 𝑦 − complex baseband symbols

Transmitter Receiver

Channel𝑠
𝑥 𝑦

Ƹ𝑠

𝛻𝑙(𝑠, Ƹ𝑠)

Channel Model


𝛻𝑙(𝑠, Ƹ𝑠)

• Backpropagation calculates loss gradients 
to update weights and biases

• Calculating transmitter updates requires a 
known channel function

• Ideally, an ABCs would optimize any 
channel

• NN approximation of a channel provides 
missing channel gradients



4

Training and Evaluating a Model

Qualities of a Good Training Algorithm
• Accurate

> Statistical distance

> Qualitative analysis

• Robust

> Input distribution 𝑝(𝑥)

> ‘Difficult’ channels

• Stable

> Converges to a solution

> Repeatable results

Black-box training

Untrained
model

Channel
Measurements

Trained
model

Training 
Algorithm

(GAN)

Approximates a distribution

𝑝(𝑥)

𝑝(𝑥)

𝑝 𝑦

𝑝 𝑦
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Training Demonstration
5M symbols / Random 64-QAM Input

Channel Response Neural Network Response Binned Difference
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Channel Simulations

• “Channels” include all processes 
between modulation/demodulation

• Non-linear amplification and pulse 
shaping cause ISI

• Dispersive channels cause ISI

• Equalization more difficult in non-
linear channels

• Non-Gaussian noise

Power 
Amplifier

Multipath
Band-limiting

Filter
Phase Noise
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GAN Architecture

1. Discriminator learns to classify real/fake channel 
responses

2. Stabilize training with VAE cycle (y-z-y)
3. Discourage mode collapse with latent regression (z-y-z)

1

2
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Results

The GAN learned
• Arbitrary Inputs

> Amplifier amplitude/phase characteristics

> ISI distortions for high energy symbols

> Distortions specific to constellation

• Channel Parameters

> Distortions specific to the RRC roll-off 
factor

> Both high/low AWGN powers

Input Power

Input Constellation

Roll-off Factors

AWGN Power

Trained Model
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Results Cont.
Dispersion

Multipath Phase Noise

The GAN learned
• ISI due to group delay variation

• ISI from multipath model

• Non-Gaussian noise process



10

Conclusions

ABCs provide an end-to-end optimization, but gradients cannot be calculated 
by the transmitter. This can be circumvented by approximating the channel 
with a neural network. We provide a new GAN architecture for this purpose. 
We demonstrate the utility of our architecture by evaluating the GAN on 
channels that contain non-linearities, intersymbol interference, and non-
Gaussian statistics. 

Next steps include

• ABCs utilization of GAN architecture

• Lab demonstration


