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Autoencoder-Based Communications System.
(ABCs) g

Background:

* Recent advances in communication system design
have applied deep learning to optimize the
physical layer for arbitrary channels

* Promising approach to optimizing performance
over channels with difficult analytic solutions

Motivation:

e Simplify the traditional communication system,
reduce dependency on channel models

* Adapt to a changing environment, and optimize
over the end-to-end system

 Generalize over hardware, medium, and
waveform




Approximating Channel Gradients
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s,§ — messages (bit sequences)
x,y — complex baseband symbols

Backpropagation calculates loss gradients
to update weights and biases

Calculating transmitter updates requires a
known channel function

Ideally, an ABCs would optimize any
channel

NN approximation of a channel provides
missing channel gradients




Training and Evaluating a Model
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Measurements Qualities of a Good Training Algorithm

Black-box training * Accurate
> Statistical distance

> Qualitative analysis

p(x)ﬁ:@:—'pgy) * Robust

> Input distribution p(x)
PP

v > ‘Difficult’ channels
p(x)-’@*p(y) e Stable
> Converges to a solution
> Repeatable results




Training Demonstration
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Channel Simulations

Group Delay [T

* “Channels” include all processes
between modulation/demodulation

* Non-linear amplification and pulse
shaping cause ISI

* Dispersive channels cause ISI T Band-limiting

* Equalization more difficult in non- Amplifier Filter Multipath Phase Noise
linear channels

* Non-Gaussian noise
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GAN Architecture

Generator Discriminator

1. Discriminator learns to classify real/fake channel l—’ Ml E o E E

responses X —- E :_% i = e
2. Stabilize training with VAE cycle (y-z-y) z E 5 Y =7
3. Discourage mode collapse with latent regression (z-y-z) g o=

FC: 1024 : ReLU
FC : 128 : ReLU
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Results

Input Power Roll-off Factors
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> Amplifier amplitude/phase characteristics
> |SI distortions for high energy symbols

> Distortions specific to constellation
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e Channel Parameters

Generator Output

> Distortions specific to the RRC roll-off
factor

Generator Output
(-3

> Both high/low AWGN powers

Input Constellation AWGN Power




Dis erion
Results Cont. QPSK 16?QAM

32-APSK

The GAN learned

* ISl due to group delay variation
* ISl from multipath model

* Non-Gaussian noise process

Channel Output

Generator Output

QPSK 16-QAM 32-APSK

Channel Output
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Generator Output
Generator Output

Multipath Phase Noise =




Conclusions

%l

ABCs provide an end-to-end optimization, but gradients cannot be calculated
by the transmitter. This can be circumvented by approximating the channel
with a neural network. We provide a new GAN architecture for this purpose.
We demonstrate the utility of our architecture by evaluating the GAN on
channels that contain non-linearities, intersymbol interference, and non-

Gaussian statistics.

Next steps include
 ABCs utilization of GAN architecture

e Lab demonstration



