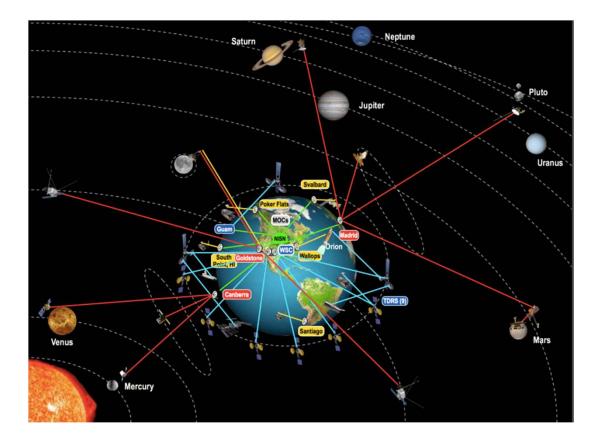


Machine Learning and Optimization for Resource-Constrained Platforms

6/26/2019

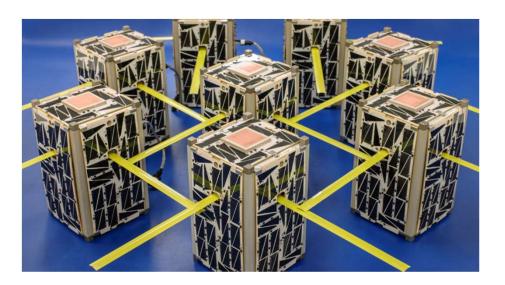

Patrick Barnes Robert Murawski

7501 Greenway Center Drive, Suite 805 | Greenbelt. MD 20770 | 410.507.0234 | E: Colleen@mti-systems.com

NASA Space Communications and Navigation

- Three operational networks (DSN, SN, NEN)
- Ground stations spread out all over the world
- Provide communications services to supported missions using spacebased and ground-based assets
- Scheduling handled by priority, request, and collegiate bargaining

Cognitive Communications Task



- Artificial Intelligence (AI) and Machine Learning (ML) strategies for NASA communication network
- Optimization
 - Increase overall performance of the network
 - Parameter modification
 - Throughput
 - Power consumption
 - Latency
- Large networks create a scaling issue
- Overwhelming computation resources required

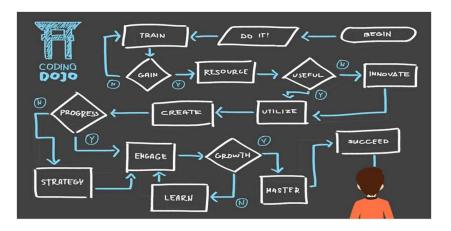
Resource Constraint

- Cubesats
 - Cost effective, small form factor
 - Efficient test platform
 - Science investigation, new technology demo
 - Constellation, swarms
- Hardware and power limit
- Emulation with similar constrained hardware

Network Scheduling

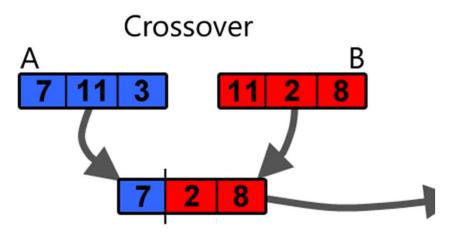
- As launch costs decrease, desire to launch missions increases
- Manual scheduling can be overburdened
- Process
 - Mission requirements, orbit patterns, ground asset availability, mission priority
 - Network-specific flavors for NASA
 - TUT time, collegiate scheduling, priority
- Anomalous events further burden manual scheduling personnel

Automated scheduling

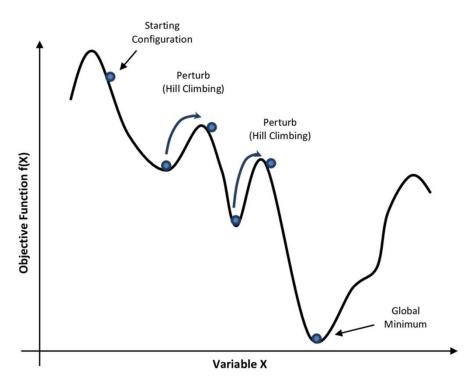


- Centralized, Decentralized
 - Full network view vs cluster view
- Schedule analysis and deconfliction
- Route planning
 - Power consumption
 - Time variance
 - BER
 - Bandwidth
- Optimization can be run 1000s of times for optimal solution

Algorithms

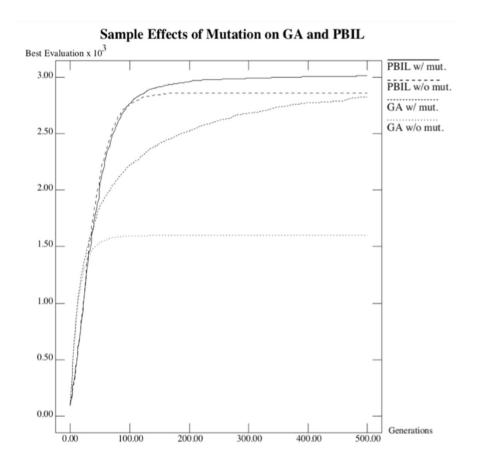

- AI & ML rely on algorithms to produce solutions
- Optimal vs near-optimal
 Time tradeoff
- Many Al areas
 - Evolutionary, Swarmm
 Neural, Immune, ...
 - All provide pros and cons for problem spaces

Genetic Algorithm



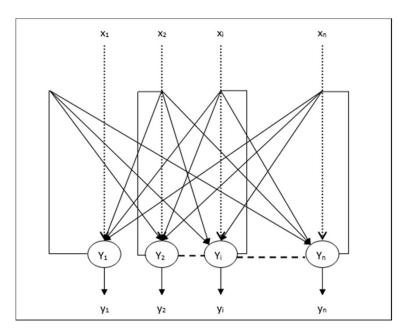
- Species population and genetics
- Mutation and Crossover combines "genes"
- Pros
 - Faster than exhaustive search
 - Low memory requirement
 - Simple, quick implementation
- Cons
 - No optimal solution guarantee
 - Large compute time for some spaces

Simulated Annealing

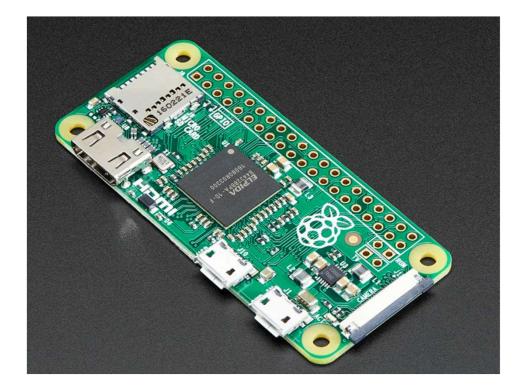

- Inspired by metallurgy

 Metal heated and slowly cooled to reduce defects
- Pros
 - Always converge to global optimum
 - Simple implementation
- Cons
 - Convergence to optimal solution may require oversampling
 - Time tradeoff

Population-based Incremental Learning


- Evolutionary like GA
- Attempts to reduce memory footprint of GA
- Mutation occurs at attribute
- Pros
 - Smaller memory footprint than GA
- Cons
 - Not guaranteed to find optimal solution

Hopfield Network

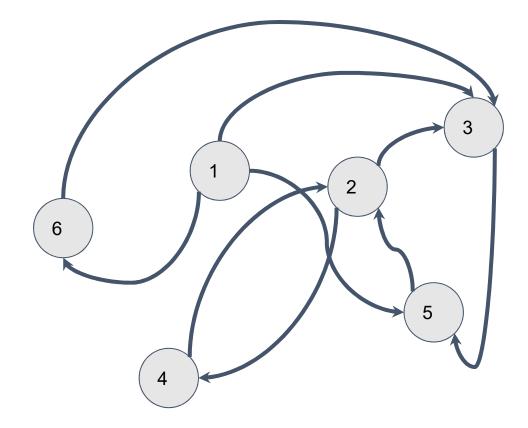


- Neural networking
- Nodes and edges
- Edges consist of weights which determine optimal paths
- Pros
 - Stored patterns can increase search time
- Cons
 - Edges may only evaluate one criteria at a time
 - May converge to wrong local minimum

Test strategy

- C++ simulation of network graph
 - Nodes, edges, requests, routes
 - Metadata held at edges and nodes
 - Data rate, power, schedule
- Hardware emulation replaces software nodes
 - Raspberry Pi Zero, resource constraint

Project status



• Current

- C++ Network Graph setup and can be imported
- Schedule requests in place (Manual or automatic)
- Genitor (GA) transferred to C++ and running appropriately based on one criteria (data rate)
- Simulated annealing transferred to C++
- Hopfield network placeholder code in place
- To do
 - Add time varying parameters to optimization
 - Increase node/edge count
 - Add power requirement as paramter
 - Implement PBIL and HN
 - Create GUI

Network Graph

Thank you

• Patrick Barnes - MTI Systems, Inc

7501 Greenway Center Drive, Suite 805 | Greenbelt. MD 20770 | 410.507.0234 | E: Colleen@mti-systems.com