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The next genera+on of communica+on satellites
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Video

Data

§ Satellite communications demand is estimated to 
duplicate by 2025, with data being the main business

§ Demand will become bidirectional and more fluctuating
§ New entrants include in-flight applications and cruise 

ships

§ Spot beams, phased arrays, and digital processors will provide 
increased flexibility to new systems

§ Future constella?ons will have more than 20,000 fully-dynamic
spot beams

§ The power and bandwidth, the frequency plan, and the poin?ng 
and shape of each beam will be individually configurable

O3b mPower
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Dynamic resource allocation problem
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§ Satellite operators face the challenge of automa&ng their 
resource alloca&on strategies to exploit this new flexibility and 
turn it into a larger service capacity

§ The problem is complex: the solu<on space is high-dimensional, 
non-convex [1], and NP-hardness has been proved [2]

§ Previous studies have examined metaheuris&c algorithms [1-4], 
which are not easily operable under real-&me constraints

§ Two recent studies [5, 6] have applied discre&zed Deep 
Reinforcement Learning (DRL) approaches, challenging when 
dimensionality is high

§ We propose a DRL architecture based on continuous variables to 
allocate power, working within time and dimensionality constraints
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Reinforcement Learning
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§ Typical Reinforcement Learning (RL) setup is composed of five elements [7]

§ Goal is to find a policy that maps each state into an ac8on to maximize cumula8ve discounted 
reward
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Policy Cumulative discounted reward



Deep Reinforcement Learning
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§ When the number of different states and 
ac3ons is small, compu3ng tabular policies is 
preferred

States Actions

§ When dimensionality is high or states/ac3ons 
are intrinsically con1nuous, compu3ng a 
tabular policy is imprac1cal

§ Op3mizing an approximator func1on is 
chosen instead

!! = # $!

Input states Output ac1ons

§ Deep Reinforcement Learning consists of the 
use of neural networks as func3on 
approximators in a RL setup
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Problem formulation
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§ Our objec*ve is alloca*ng power to each beam to minimize the Unmet System Demand (USD) and 
overall power consump*on

§ The Unmet System Demand accounts for the amount of demand that is not sa3sfied (also used in 
[2, 3]):

Maximum power per beam

Total satellite power

Minimum power per beam

Power per beam

Data rate per beamDemand per beam
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Proposed architecture
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§ DRL architecture based on a satellite 
communica4ons model, a neural network 
policy, and the Proximal Policy Op4miza4on 
(PPO) [8] algorithm as policy improvement 
method

§ The state is composed by the demand of the 
current 4mestep and the demand and 
op4mal power of the two previous 4mesteps

§ The ac/on is the power allocated per beam

§ The reward is a weighted combination of the 
USD and the power MSE

§ The policy network chosen is a Multilayer 
Perceptron (MLP), a fully-connected network
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Results
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§ 30-beam GEO satellite located over North America
§ Time series, provided by SES, with demand samples every 2 minutes throughout 48 hours
§ First 24 hours taken as training data, policy evaluated on last 24 hours
§ Results averaged over 10 simulations

Training reward sequence

§ The agent quickly learns that increasing mean 
power is beIer to serve customers

§ After ~5,000 iterations the policy saturates 
and starts learning frequency components
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Results
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Power allocated by the policy 
vs. optimal power

Data rate result of the policy 
vs. demand
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Extended results a-er the paper
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Performance summary table – Test data

§ The policy, on average, serves 99% of the demand
§ Spends 35% more power than necessary

§ A Long Short Term Memory network (LSTM) does 
not necessarily improve the results

§ GA generally achieve zero USD and beHer 
power results

§ 1,300 Kmes slower than DRL
§ Hard to scale 



Conclusions and future work
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In this study we have…

§ Proposed a Deep Reinforcement Learning architecture for power alloca3on using con3nuous
state and ac2on spaces

§ Simulated a 30-beam satellite with a dynamic resource management engine based on our 
architecture

§ Achieved a ~1,300 3mes speed increase with respect to metaheuris2cs while offering comparable 
quality solu2ons

Next steps include…

§ Refining the architecture, since the policy presents some suboptimalities in terms of power 
allocation (35% extra power compared to GA)

§ Working on the generalizability (robust to diverse data) and scalability (systems with more 
beams) of the policy

§ Increasing the complexity of the problem by adding new optimization variables (e.g. frequency 
plan)
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