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The next generation of communication satellites

Global Satellite Capacity Revenues
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= Spot beams, phased arrays, and digital processors will provide
increased flexibility to new systems
= Future constellations will have more than 20,000 fully-dynamic

spot beams

= The power and bandwidth, the frequency plan, and the pointing
and shape of each beam will be individually configurable

Source: NSR

Satellite communications demand is estimated to
duplicate by 2025, with data being the main business
Demand will become bidirectional and more fluctuating
New entrants include in-flight applications and cruise
ships
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Dynamic resource allocation problem

= Satellite operators face the challenge of automating their
resource allocation strategies to exploit this new flexibility and
turn it into a larger service capacity

= The problem is complex: the solution space is high-dimensional,
non-convex [1], and NP-hardness has been proved [2]

= Previous studies have examined metaheuristic algorithms [1-4],
which are not easily operable under real-time constraints

= Two recent studies [5, 6] have applied discretized Deep
Reinforcement Learning (DRL) approaches, challenging when
dimensionality is high

We propose a DRL architecture based on continuous variables to

allocate power, working within time and dimensionality constraints
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Reinforcement Learning

= Typical Reinforcement Learning (RL) setup is composed of five elements [7]

';| Agent |

state reward

g Uy
action
A,

7

\.

Environment ]4—

= Goalis to find a policy that maps each state into an action to maximize cumulative discounted

reward
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Deep Reinforcement Learning

= When the number of different states and
actions is small, computing tabular policies is

=  When dimensionality is high or states/actions
are intrinsically continuous, computing a

preferred tabular policy is impractical
=  Optimizing an approximator function is
States Actions Chosen instead
Input states Output actions
= Deep Reinforcement Learning consists of the
use of neural networks as function
approximators in a RL setup
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Problem formulation

= Qur objective is allocating power to each beam to minimize the Unmet System Demand (USD) and
overall power consumption

T Ny
minimize USD;(Py)+ B Py
Power per beam +——— Py ; (Fo.t) ; ’
subjectto Py, < P"**, Vbe B, vVte {l,..,T} Maximum power per beam
Ny
Z Pyt < Piot, Vte{l,..T} > Total satellite power
b=1

v

Minimum power per beam

Py >0, VYbeB, Vte{l,.. T}

= The Unmet System Demand accounts for the amount of demand that is not satisfied (also used in
[21 3]) No
USD; =Y max[Dy; — Ry 1(Poy), 0]

SR
» Data rate per beam
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Demand per beam <
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Proposed architecture

= DRL architecture based on a satellite

communications model, a neural network

policy, and the Proximal Policy Optimization
(PPO) [8] algorithm as policy improvement

The state is composed by the demand of the
current timestep and the demand and
optimal power of the two previous timesteps

St = {Dta Dt—17 Dt—Za Pt*—la 7Dt*—2}

method
State The action is the power allocated per beam
ar = {Pb,t‘b -~ {1,...,Nb},0 S Pb,t S Pbrnax}
. i . PPO
Action NN Policy s
. The reward is a weighted combination of the
gent
_____________________________________________________________________________ USD and the power MSE
Satellite Throughput i— ! Zév:bl min(Rp ¢ — Dpt,0) leavzbl(Pb,t - Pb*’t)z
s Model demand . Tt = No N Ny ps
| ' Reward b=1 /bt b=1"1b,t
\Environment i , .
The policy network chosen is a Multilayer
Perceptron (MLP), a fully-connected network
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Results

= Results averaged over 10 simulations

= 30-beam GEO satellite located over North America
= Time series, provided by SES, with demand samples every 2 minutes throughout 48 hours
= First 24 hours taken as training data, policy evaluated on last 24 hours
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The agent quickly learns that increasing mean
power is better to serve customers

After ~5,000 iterations the policy saturates
and starts learning frequency components
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Extended results after the paper

Performance summary table — Test data

MLP LSTM GA125it. GA 500 it.
Agg. demand 1 1 1 1
Avg. USD 0.0093 0.0116 0 0
Opt. energy 1 1 1 1
Output energy 1.35 1.41 1.22 1.05
Exec. time (s) 0.019 0.020 25.6 98.9

= The policy, on average, serves 99% of the demand
= Spends 35% more power than necessary

= A Long Short Term Memory network (LSTM) does
not necessarily improve the results

=  GA generally achieve zero USD and better

power results
= 1,300 times slower than DRL

= Hard to scale
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Conclusions and future work

In this study we have...

Proposed a Deep Reinforcement Learning architecture for power allocation using continuous

state and action spaces
Simulated a 30-beam satellite with a dynamic resource management engine based on our

architecture
Achieved a ~1,300 times speed increase with respect to metaheuristics while offering comparable

quality solutions

Next steps include...

Refining the architecture, since the policy presents some suboptimalities in terms of power
allocation (35% extra power compared to GA)
Working on the generalizability (robust to diverse data) and scalability (systems with more

beams) of the policy
Increasing the complexity of the problem by adding new optimization variables (e.g. frequency

plan)
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