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Introduction

The AI-enabled architecture encompasses directional spectrum sensing and modulation 
recognition with attention and saliency to close the loop on agile RF and software-defined radio 
(SDR) hardware that adapts to changing RF scenes.
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Proposed AI-enabled CR receiver architecture 
block diagram 

• The 1st path 
combines data from 
the two sets of signal 
paths to generate CR-
relevant information.

• The 2nd path uses bio-
inspired real-time 
spectrum analysis chips 
(known as “RF 
cochleas”) to extract 
digitized time-frequency 
features that provide 
spectrum awareness 
over several GHz of real-
time bandwidth. 

• Low-power FPGAs 
packetize these N 
parallel sets of features 
and then feed them into 
a high-bandwidth 
reconfigurable processor 
(e.g., ROACH-2 platform)

• It determines spatio-temporal activity levels to select data for further analysis; 

• It performs RF scene analysis on the selected data to localize important sources and recognize their 
modulation protocols.



Cochlea – Introduction

Anatomy of human ear
 Dynamic range (at 

input): 120 dB
 Power consumption: 

~14 µW
 Frequency range: 20 

Hz ~ 20 KHz

A generic spatially-
varying one-dimensional 
transmission line

4(S. Mandal, "Collective Analog Bioelectronic Computation," Ph.D. Thesis, MIT, 2009)



Cochlea – Block diagram

5(Y. Wang and S. Mandal, “Cochlear signal analysis for broadband spectrum sensing in cognitive radio networks”, in 
Proceedings of the IEEE Cognitive Communications in Aerospace Applications (CCAA) Workshop, 2017.)

Simplified block diagram of the proposed 
cochlea-based ultra-broadband RF feature 
extractor. 

Photograph of the digitally-programmable
RF cochlea chip superposed on its test 
board, while directly plugs into an FPGA 
back-end via two high-speed mezzanine
card (HSMC) connectors.



Cochlea – Typical outputs
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Spatial TFs for continuous wave (CW) inputs 
at log-spaced input frequencies (1.5~10.0 
GHz).

Spatial output responses for an RF 
input contains two CW frequencies: 
7.5 GHz (amplitude = 20 mV) and 5 
GHz (amplitude varying from 20~50 
mV in 5 mV steps).

Time-varying spatial output response to 
a chirp input (frequency linearly 
increasing from 5 to 6.5 GHz in 60 ns).



Experimental setup
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(G. Mendis, J. Wei, and A. Madanayake, “Deep belief network for automated modulation 
classification in cognitive radio,� in IEEE Cognitive Communications for Aerospace Applications 
Workshop (CCAA), 2017.)

• Second-order features 
unique to each 
modulation scheme can 
be extracted from its 
spectral correlation 
function (SCF) while 
suppressing stationary 
features.

• A deep learning-based 
classifier is leveraged to 
recognize the unique 
features of such 
visualized SCF patterns 
to identify the observed 
RF signal.



Experimental MR accuracy
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• An obvious improvement exists as the size of the training set increases; it remains > 90% 
when this number is >200. 

• Detection accuracy after training the network with 300 SCF patterns was > 92.5% in all 
cases.



MR-enabled iterative optimization
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MR enables iterative optimization of the RF receiver when the 
latter lacks priori knowledge of the expected signal parameters. 
In particular, we can use ML-based MR to continuously adapt a 
CR to optimally receive the desired wireless signals. 

1) A 3 GHz RF transmitter is programmed to randomly select 
one of three modulation schemes (1=BPSK, 2=QPSK, and 
4=QAM8) and the receiver output is recorded at each time 
step (15 sec). 

2) A trained DBN network classifies the down-converted signal.

3) A controller (implemented in MATLAB) tunes an RF band-
pass filter (BPF) to maximize signal gain if the desired scheme 
(in this case, QPSK) is detected, or else de-tunes it to reduce 
gain and prevent blocking. 

4) Loop bandwidth is limited by the software-based ML 
implementation and can be greatly improved by using an 
FPGA instead.



MR-enabled blocker removal
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The proposed ML-based MR can also be used to 
adaptively remove undesired wireless signals 
(blockers). 

1) Two modulated signals (QAM8 at 3 GHz, and 
FSK2 at 2.7 GHz) with the same power level. 

2) The RF receiver sweeps the BPF control 
voltages and optimizes the BPF to maximize 
signal gain when the desired scheme 
(QAM8) is detected by the trained DBN.

3) A significant improvement in the received 
constellation after optimization, with the 
blocker being suppressed by ~10 dB 

4) Given the limited selectivity of the tunable 
BPF, the proposed approach is only effective 
for removing far-out blockers (>250 MHz 
away from the desired signal).



Conclusion
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The proposed AI-driven spectrum awareness approach enables:

i) A CR receiver's RF front-end to be autonomously optimized for receiving a given set of waveforms; 

ii) DSA algorithms that detect and exploit spatio-temporal white space on various timescales by closely integrating the adaptive 
front-end with MR algorithms. 

A single-channel prototype operating around 3 GHz has been implemented and tested. Experimental results show:

i) > 90% over-the-air MR accuracy for several common schemes using a DBN; 

ii) Autonomous self-optimization of the tunable RF front-end.

Future work:

1) Multi-channel platform operating on broadband input signals;

2) RF cochlea output integrated with the MR algorithms.
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