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The Al-enabled architecture encompasses directional spectrum sensing and modulation
recognition with attention and saliency to close the loop on agile RF and software-defined radio
(SDR) hardware that adapts to changing RF scenes. 2



Proposed Al-enabled CR receiver architecture
block diagram
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* |t determines spatio-temporal activity levels to select data for further analysis;

* |t performs RF scene analysis on the selected data to localize important sources and recognize their
modulation protocols. 3



Anatomy of human ear

» Dynamic range (at
input): 120 dB

» Power consumption:
~14 pW

» Frequency range: 20
Hz ~ 20 KHz

A generic spatially-
varying one-dimensional
transmission line

Cochlea — Introduction
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(S. Mandal, "Collective Analog Bioelectronic Computation," Ph.D. Thesis, MIT, 2009)
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Cochlea — Block diagram
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Simplified block diagram of the proposed
cochlea-based ultra-broadband RF feature

extractor. _ _ _
back-end via two high-speed mezzanine
card (HSMC) connectors.
(Y. Wang and S. Mandal, “Cochlear signal analysis for broadband spectrum sensing in cognitive radio networks”, in 5

Proceedings of the IEEE Cognitive Communications in Aerospace Applications (CCAA) Workshop, 2017.)



Cochlea — Typical outputs

B
20 x“: Cochlear gain (dB) dB
(b) | | 0
g 3
— 1 3 =
= 5 :
5 |2 Y
= 3 E
-
§. g°
- &
0 10 20 30 40 50 0 10 20 30 40 50 10 20 20 40 50
Stage Stage (c) Stage
Spatial TFs for continuous wave (CW) inputs 'Spatlal output resp(ér\f/efs for an BF Tlrrslg-v§ry|ng sfpatlal outpl)'ut reTponse to
at log-spaced input frequencies (1.5~10.0 input contams_two requencies: f';\ chirp llnput( requency mea_r y
7.5 GHz (amplitude =20 mV) and 5 increasing from 5 to 6.5 GHz in 60 ns).

GHz). . .
GHz (amplitude varying from 20~50

mV in 5 mV steps).



Experimental setup
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Experimental MR accuracy
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* An obvious improvement exists as the size of the training set increases; it remains > 90%
when this number is >200.

e Detection accuracy after training the network with 300 SCF patterns was > 92.5% in all
cases.
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MR-enabled iterative optimization
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MR enables iterative optimization of the RF receiver when the
latter lacks priori knowledge of the expected signal parameters.
In particular, we can use ML-based MR to continuously adapt a
CR to optimally receive the desired wireless signals.

1)

2)

3)

A 3 GHz RF transmitter is programmed to randomly select
one of three modulation schemes (1=BPSK, 2=QPSK, and
4=QAMS8) and the receiver output is recorded at each time
step (15 sec).

A trained DBN network classifies the down-converted signal.

A controller (implemented in MATLAB) tunes an RF band-
pass filter (BPF) to maximize signal gain if the desired scheme
(in this case, QPSK) is detected, or else de-tunes it to reduce
gain and prevent blocking.

Loop bandwidth is limited by the software-based ML
implementation and can be greatly improved by using an
FPGA instead.
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The proposed ML-based MR can also be used to
adaptively remove undesired wireless signals
(blockers).

1) Two modulated signals (QAMS8 at 3 GHz, and

2)

3)

4)

FSK2 at 2.7 GHz) with the same power level.

The RF receiver sweeps the BPF control
voltages and optimizes the BPF to maximize
signal gain when the desired scheme
(QAMS) is detected by the trained DBN.

A significant improvement in the received
constellation after optimization, with the
blocker being suppressed by ~10 dB

Given the limited selectivity of the tunable
BPF, the proposed approach is only effective
for removing far-out blockers (>250 MHz
away from the desired signal).
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Conclusion

The proposed Al-driven spectrum awareness approach enables:

i) A CRreceiver's RF front-end to be autonomously optimized for receiving a given set of waveforms;

ii) DSA algorithms that detect and exploit spatio-temporal white space on various timescales by closely integrating the adaptive
front-end with MR algorithms.

A single-channel prototype operating around 3 GHz has been implemented and tested. Experimental results show:

i)  >90% over-the-air MR accuracy for several common schemes using a DBN;

i)  Autonomous self-optimization of the tunable RF front-end.

Future work:
1) Multi-channel platform operating on broadband input signals;

2) RF cochlea output integrated with the MR algorithms.
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