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Ideal World !

Channel always available
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No malicious attacks

Receive signal successfully
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Motivation

frequency

Signal of 
interest

Heterogeneous wideband spectrum

Channel always available

No interference

No malicious attacks

Receive signal successfully

How to find spectrum opportunities 
in such heterogeneous RF environment? 
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Motivation

frequency

Signal of 
interest

Heterogeneous wideband spectrum

Ability to learn efficient channel-selection policy to avoid interference, jamming and 
any other harmful signals

Ability to work in a partially-observable RF environment

Rapid reconfiguration to tackle sudden changes in the RF environment

Low computational complexity

Properties of proposed technique
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• Link of interest
• Rx node has cognitive 
capabilities

• Secured control channel 
between Tx and Rx
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heterogeneous RF 
environment

Interference sourcesJammer
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heterogeneous RF 
environment

The WACR needs to choose
a frequency channel that

achieves the highest possible 
SINR value.

The RF spectrum of interest

N frequency channels
f



System Model

9http://ece-research.unm.edu/cisl/

The received SINR of the WACR in channel 𝒂𝒄(𝒕) at time 𝒕
can be expressed as

• Ps : The transmitted power for the signal of interest.
• hs : The channel power gain from Tx to WACR (Rx).
• PI,i : The transmitted for the signal of interference source i.
• hI,i : The channel power gain from interference source i to WACR.
• PJ,j : The transmitted power for the signal of jammer j.
• hI,i : The channel power gain from jammer j to WACR.
• 2 : The receiver noise power, assuming AWGN.

(1)
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Communications

WACR

𝑎𝑐(𝑡) ∈ 1,⋯ , 𝑁

Wideband spectrum

RX
TX

Select communications channel

• Estimate SINR 𝜇𝑎𝑐 𝑡

• The function 𝑔(. ) indicates the success of the communications

𝑔(𝜇𝑎𝑐(𝑡)) = ൝
𝜆, 𝑖𝑓 𝜇𝑎𝑐 𝑡 > 𝜇𝑡ℎ
−𝜆, 𝑖𝑓 𝜇𝑎𝑐 𝑡 ≤ 𝜇𝑡ℎ
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Sensing

WACR

Wideband spectrum

RX

Spectrum 
sensing

Freq.

t t+1Time:
sweeping
sensing

𝑁𝑠

• The function 𝑓(. ) indicates the availability of the sensing channels

𝑓(𝑣𝑎𝑖
𝑠(𝑡)) = ൝

−𝜆, 𝑖𝑓 𝑣𝑎𝑖
𝑠(𝑡) > 𝑣𝑡ℎ

𝜆, 𝑖𝑓 𝑣𝑎𝑖
𝑠(𝑡) ≤ 𝑣𝑡ℎ

𝑁𝑠

Select sensing channel

𝒂𝑠(𝑡) = 𝑎1
𝑠 𝑡 ,⋯ , 𝑎𝑁𝑠

𝑠 , where 𝑁𝑠 < 𝑁
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Using the information 
from both 
communications and 
sensing

The state 𝑺(𝑡) is made of 
𝑇 successive indication 
matrices up to time 𝑡

𝐼(𝑡 − 𝑇 + 1)

𝐼(𝑡)

2

𝑇

𝑁𝑠 + 1
𝑺 𝑡 =
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Using reinforcement learning (e.g. Q-learning)

Problems
• The number of possible states can become extremely large even for few 

frequency channels and few time slots.
• The learning speed would be an obstacle to work efficiently in real-time.

Solution?

Use Deep reinforcement learning
Double Deep Q-network (DDQN)

Combine reinforcement learning with 
convolutional neural network (CNN)

Wideband 
spectrumReward 𝑟(𝑺(𝑡) , 𝑎𝑐(𝑡)) = 𝜇𝑎𝑐 𝑡

State 𝑺(𝑡)

Action 𝑎𝑐(𝑡)

𝑺(𝑡 + 1)
Markov decision 
process (MDP) 

WACR
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• For a given state 𝑺(𝑡) , the CNN is used to estimate the Q- function 
𝑄(𝑺(𝑡) , 𝑎𝑐(𝑡)) for each possible action 𝑎𝑐(𝑡) {1,…,N}.

• The WACR selects an action 𝑎𝑐(𝑡) that represents the index of the 
communications channel at time 𝑡 + 1

𝑄(𝑺(𝑡), 1)

𝑄(𝑺(𝑡), 𝑁)

𝑎𝑐(𝑡)

Convolutional 
layer

Pooling layer Fully connected 
layer

Decision

𝑺 𝑡

𝟐 × (𝑵𝒔 + 𝟏) × 𝑻

DDQN state

Action
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Experience replay Data set 
𝒟(𝑡)

𝑥 𝑡 = 𝑺 𝑡 , 𝑎𝑐(𝑡), 𝜇𝑎𝑐(𝑡), 𝑺(𝑡 + 1)
store experience

𝑥 𝑘 ~𝑈(𝒟(𝑡))
draw randomly 

1 𝑘 𝑡

• Break temporal correlation between training examples. 

• Use stochastic gradient descent (SGD) to update network weights 𝜃(𝑡)

Loss 
function 

𝜂 = 𝜇𝑎𝑐(𝑡) + 𝛾max
ư𝑎
𝑄(𝑆 𝑡 , ư𝑎; 𝜃(𝑡))

Target 
value
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Target Network

𝑄(𝑺(𝑡) , 𝑎𝑐(𝑡);𝜃(𝑡))

𝑄(𝑺(𝑡 + 1) , ư𝑎 ; 𝜃(𝑡)) 𝜂

𝑺(𝑡)

𝑺(𝑡 + 1)

Network 𝜃(𝑡)

𝐿(𝜃 𝑡 )

𝑄(𝑺(𝑡) , 𝑎𝑐(𝑡);𝜃(𝑡))𝑛𝑒𝑤

𝑄(𝑺(𝑡 + 1) , ư𝑎 ;𝜃(𝑡))𝑛𝑒𝑤 𝜂𝑛𝑒𝑤

𝑺(𝑡)

𝑺(𝑡 + 1)

Network 𝜃(𝑡)𝑛𝑒𝑤

𝜃(𝑡)𝑛𝑒𝑤

Chasing a moving
target
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Target Network

𝑄(𝑺(𝑡) , 𝑎𝑐(𝑡);𝜃(𝑡))

𝑄(𝑺(𝑡 + 1) , ư𝑎 ; ෠𝜃(𝑡)) 𝜂

Network 𝜃(𝑡)

𝐿(𝜃 𝑡 ) 𝜃(𝑡)𝑛𝑒𝑤

Target Network መ𝜃(𝑡)

𝑺(𝑡)

𝑺(𝑡 + 1)

𝑄(𝑺(𝑡) , 𝑎𝑐(𝑡);𝜃(𝑡))𝑛𝑒𝑤

𝑄(𝑺(𝑡 + 1) , ư𝑎 ; ෠𝜃(𝑡)) 𝜂

Target Network መ𝜃(𝑡)

𝑺(𝑡)

𝑺(𝑡 + 1)

Network 𝜃(𝑡)𝑛𝑒𝑤

Same 
target

𝜂 = 𝜇𝑎𝑐(𝑡) + 𝛾max
ư𝑎
𝑄(𝑆 𝑡 , ư𝑎; መ𝜃(𝑡))

Reset መ𝜃 𝑡 = 𝜃(𝑡)
For every 𝐿 iterations
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DDQN vs DQN

𝑄(𝑺(𝑡 + 1) , ư𝑎 ; ෠𝜃(𝑡))

Target Network መ𝜃(𝑡)

𝑺(𝑡 + 1) 𝜂 = 𝜇𝑎𝑐(𝑡) + 𝛾max
ư𝑎
𝑄(𝑆 𝑡 , ư𝑎; መ𝜃(𝑡))

𝜂 = 𝜇𝑎𝑐(𝑡) + 𝛾𝑄[𝑆 𝑡 + 1 , argmax
ư𝑎
𝑄(𝑆 𝑡 , ư𝑎; 𝜃(𝑡)); መ𝜃(𝑡)]

Same network to select best action and evaluate optimal Q-value

DDQN decouples the selection and evaluation process

Select best action using 𝜃(𝑡)
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Database for indication 
matrices

𝐼 𝑡 , 𝐼 𝑡 − 1 ,⋯

Create 
indication 

matrix 𝐼(𝑡) Create state 
S(𝑡)

Convolutional
layer

Pooling layer 
+ ReLU

Fully connected 
layer

𝑄(𝑆 𝑡 , 1)

𝑄(𝑆 𝑡 , 𝑁)

⋮
𝐼(𝑡 − 𝑇 + 1)

𝐼(𝑡)

Q-network

S(𝑡)

Select sensing 
channels

𝑎1
𝑠 𝑡 ,⋯ , 𝑎𝑁𝑠

𝑠 𝑡

Estimate average 
power level

𝜈𝑎1𝑠 𝑡−1 ,⋯ , 𝜈𝑎𝑁𝑠
𝑠 𝑡−1

Detect 
availability/unavailability
𝑓(𝜈𝑎1𝑠 𝑡−1 ),⋯ , 𝑓(𝜈𝑎𝑁𝑠

𝑠 𝑡−1 )

Sensing strategy
(sweeping, random, ⋯)

Sensing

𝑎1
𝑠 𝑡 − 1 ,⋯ , 𝑎𝑁𝑠

𝑠 𝑡 − 1

Estimate received 
SINR

𝜇𝑎𝑐 𝑡−1

Detect 
communications 
success/failure
𝑔(𝜇𝑎𝑐 𝑡−1 )

Select 
communication

s channel
𝑎𝑐 𝑡

Communications

𝑎𝑐 𝑡 − 1
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** M. A. Aref and S. K. Jayaweera, "Spectrum-agile Cognitive Interference Avoidance through Deep Reinforcement Learning", 14th EAI International 

Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM’19), Poznan, Poland, Jun. 2019.

Proposed 1: The proposed technique in this paper

Proposed 2

The proposed technique in **

Q-learning

Random

The WACR randomly 
chooses a channel

Comparison



Simulation Results

21http://ece-research.unm.edu/cisl/

Parameters

Number of channels (N) 6 

Number of channels that WACR can sense instantaneously (Ns ) 2 

Number of time slots in the sensing matrix  (T) 3 

Transmitted power for the signal of interest (Ps ) 5

Channel power gain between Tx and WACR (hs ) 0.8

Noise power of the receiver (2) 1

Thresholds (cth and th ) 2

Number of experience replays for each time slot (K) 5

Learning rate () 0.1

Discount factor () 0.4

Exploration rate () 0.1

Weighting factor () 10
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Test case 1: 

WACR
Rx

Tx

Interference 1
Interference 2
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Test case 2: 

WACR
Rx

Tx

Interference 1
Interference 2

Interference 3

ON/OFF
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Test case 3: 

WACR
Rx

Tx

Interference 1
Interference 2

Interference 3

Markov 
Jammer ON/OFF
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