Spectrum Availability Prediction in Cognitive Aerospace Communications: A Deep Learning Perspective

Lixing Yu, Qianlong Wang, Yifan Guo, Pan Li

Presented by LixingYu IEEE CCAA 2017 ,Cleveland June 27, 2017

Outline

Introduction
System Model
Spectrum Availability Prediction
Performance Evaluation
Conclusion

Introduction

- Cognitive Radio (CR) can release the spectrum resource
- Aerospace communications are requiring larger bandwidth—CR is the promising solution
- Previous works developed complicated spectrum sensing schemes—energy and time consuming
- Machine Learning are applied to optimize the sensing policy:
 - Reinforcement Learning method
 - SVM for primary user classification

Our Method

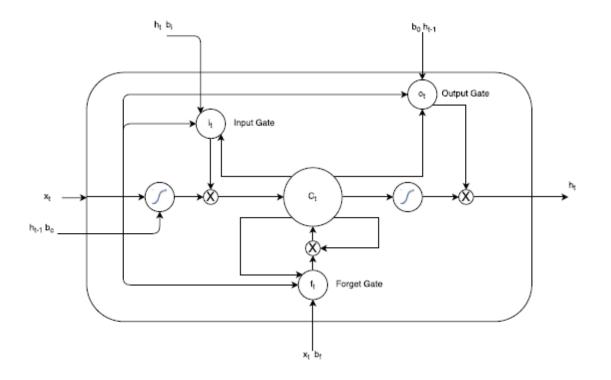
- ✤We proposed a deep learning approach
- Long Short-Term Memory network
- Using spatio-temporal domain information to predict more channels' availability

System Model

Multi-hot vector to denote the channels' availability "1" stands for the corresponding channel is occupied "0" means the corresponding channel is available to use (SU)

- Long Short-Term Memory network: A special kind of RNN
- RNN can theoretically well deal with temporally correlated data but not a good choice for long-term dependency data
- LSTM addresses this problem with special architecture

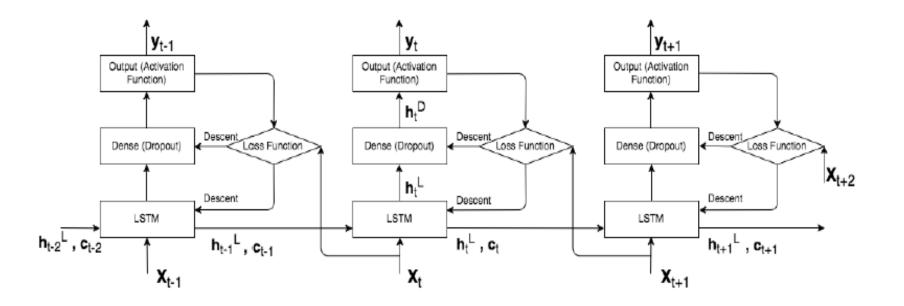
LSTM Memory Cell



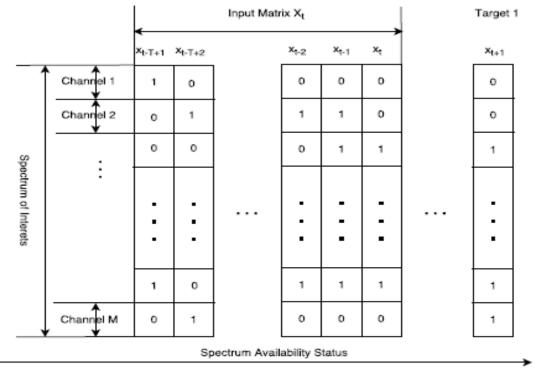
LSTM Memory Cell

$$\begin{aligned} \mathbf{i}_t &= \sigma(\mathbf{W}_{ix}\mathbf{x}_t + \mathbf{W}_{ih}\mathbf{h}_{t-1} + \mathbf{W}_{ic}\mathbf{c}_{t-1} + \mathbf{b}_i) \\ \mathbf{f}_t &= \sigma(\mathbf{W}_{fx}\mathbf{x}_t + \mathbf{W}_{fh}\mathbf{h}_{t-1} + \mathbf{W}_{fc}\mathbf{c}_{t-1} + \mathbf{b}_f) \\ \mathbf{c}_t &= \mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ \phi(\mathbf{W}_{cx}\mathbf{x}_t + \mathbf{W}_{ch}\mathbf{h}_{t-1} + \mathbf{b}_c) \\ \mathbf{o}_t &= \sigma(\mathbf{W}_{ox}\mathbf{x}_t + \mathbf{W}_{oh}\mathbf{h}_{t-1} + \mathbf{W}_{oc}\mathbf{c}_t + \mathbf{b}_o) \\ \mathbf{h}_t &= \mathbf{o}_t \circ \phi(\mathbf{c}_t) \end{aligned}$$

Network Layers

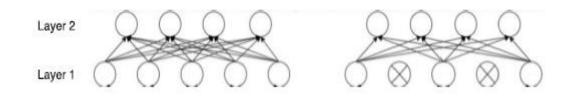


Input Matrix



Time

Dense Layer with Dropout



Spectrum Availability Prediction Output Layer Activation Function: Softmax

$$\mathbf{y}_{\mathbf{t}}^{\mathbf{m}} = \frac{e^{\mathbf{z}^{\mathbf{m}}}}{\sum_{i=1}^{M} e^{\mathbf{z}^{\mathbf{i}}}}, \text{ for } m = 1, \dots, M$$

Loss Function: Cross-entropy

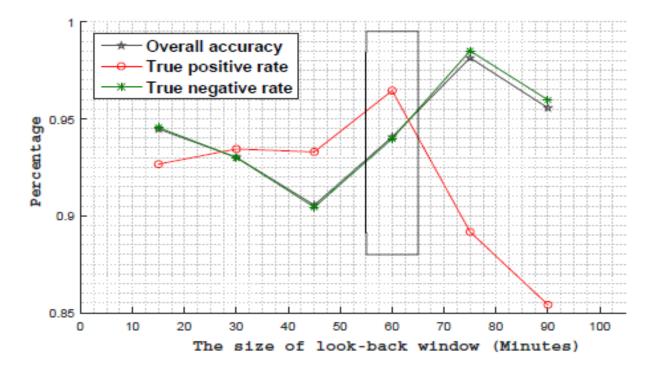
$$\xi(\mathbf{x_{t+1}}, \mathbf{y_t}) = -\sum_{i=1}^{M} \mathbf{x_{t+1}^i} \log \mathbf{y_t^i}$$

- Simulation Data: 3MHz to 5.4MHz
- ✤26 Channels
- ✤Busy or Idle: -100dbm
- NYC and Vienna (Share Spectrum Company)

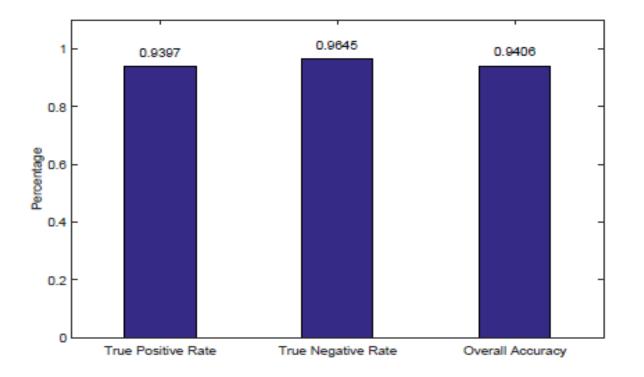
Network Setting

- ✤128 nodes in LSTM layer
- Three layers in dense network: 512, 256, 128 nodes
- Output: 26 nodes

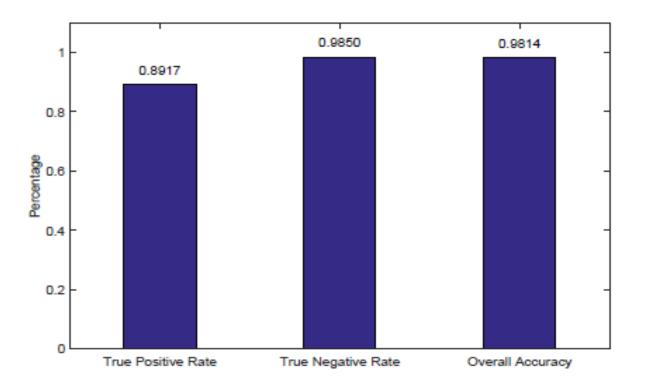
Look back window setting: 15, 30, 45, 60, 75, 90 (Min)



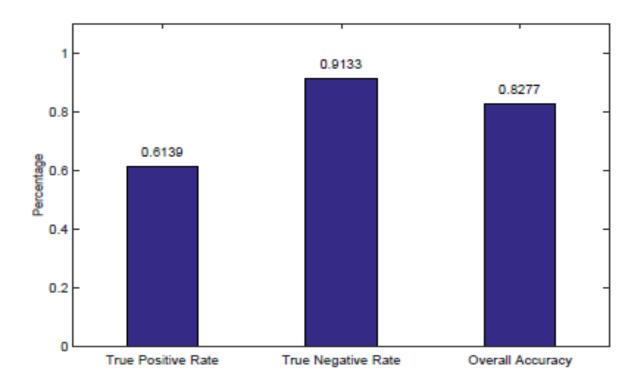
Look back window setting: 60 minutes



Look back window setting: 75 minutes



Three-layer ANN prediction model with 512, 256,128 nodes



Conclusion

- We employed the LSTM network for a better prediction method
- We utilized the spatio-temporal correlation of the channels by taking advantage of the LSTM network for a more efficient prediction (more than one channel)
- We got a higher accuracy in prediction simulation

Thank You!

