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Introduction

*» Cognitive Radio (CR) can release the spectrum
resource
s Aerospace communications are requiring larger
bandwidth—CR Is the promising solution
** Previous works developed complicated spectrum
sensing schemes—energy and time consuming
*» Machine Learning are applied to optimize the sensing
policy:
» Reinforcement Learning method
» SVM for primary user classification
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Our Method

**We proposed a deep learning approach

s Long Short-Term Memory network

s Using spatio-temporal domain information to predict
more channels’ availability
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System Model

*» Multi-hot vector to denote the channels’ availability
“1” stands for the corresponding channel is occupied
“0” means the corresponding channel is available to

use (SU)
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Spectrum Avallability Prediction

“*Long Short-Term Memory network: A special kind of
RNN

“*RNN can theoretically well deal with temporally
correlated data but not a good choice for long-term
dependency data

*»LSTM addresses this problem with special architecture
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Spectrum Availability Prediction

*LSTM Memory Cell
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Spectrum Avallability Prediction

*LSTM Memory Cell
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Spectrum Avallability Prediction

**Network Layers
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Spectrum Avallability Prediction

“* Input Matrix
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Spectrum Avallability Prediction

*»Dense Layer with Dropout
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Spectrum Avallability Prediction

» Output Layer Activation Function: Softmax
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Spectrum Avallability Prediction

< Loss Function: Cross-entropy
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Performance Evaluation

s Simulation Data: 3MHz to 5.4MHz

26 Channels

**Busy or Idle: -100dbm

“*NYC and Vienna (Share Spectrum Company)
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Performance Evaluation

“*Network Setting

128 nodes in LSTM layer

“*Three layers in dense network: 512, 256, 128 nodes
¢+ Output: 26 nodes
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Performance Evaluation
*»Look back window setting: 15, 30, 45, 60, 75, 90 (Min)
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Performance Evaluation

**Look back window setting: 60 minutes
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Performance Evaluation

**Look back window setting: 75 minutes
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Performance Evaluation

“* Three-layer ANN prediction model with 512, 256,128
nodes
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Conclusion

“*We employed the LSTM network for a better
prediction method

“*We utilized the spatio-temporal correlation of the
channels by taking advantage of the LSTM network
for a more efficient prediction (more than one
channel)

“*We got a higher accuracy in prediction simulation
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Thank You!
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