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Introduction and Motivation

Micro unmanned aerial systems (UASs) are small slow-moving unmanned
aerial systems, and they are less expensive and widely available for public
use.

The abundance of small UAS platforms could cause security concerns
because they are undetectable with military/aviation radar that are
optimized for detecting conventional aircrafts and large drones [1].

We propose a low-cost Doppler radar solution that exploits a
low-complexity binarized DBN based classier on Spectral
Correlation Function (SCF) signatures to detect and classify UASs
automatically.
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Figure: System Architecture of our proposed deep learning-based AMC method.

The University of Akron — Ohio’s Polytechnic University - College of Engineering 4



Uniting the Arts & Humanities with Science & Technology

Doppler Radar Based Remote Sensor
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Figure: (a) Overview block diagram of the proposed UAS detection system's digital radar

sensor. (b) Implemented setup of the radar sensor front end.
The University of Akron — Ohio’s Polytechnic University - College of Engineering >



- Uniting the Arts & Humanities with Science & Technology

SCF-based Feature Characterization Mechanism

* Doppler shift on radar signals can be considered as a modulation.

— The modulated signals are treated as cyclostationary processes that refer to the
processes with periodic first-order statistics, such as mean and autocorrelation [2].

* Cyclic autocorrelation function (CAF) indicates the amount of correlation
between different frequency shifted versions of a given signal and
represents the fundamental parameters of their second order periodicity.

* CAF can be calculated as follows:

a | 1 S * —j2man — jmal
R[] _hm N +1n§ x[n]x'[n—1]e }e

Where x[.] denotes the modulated signal that is considered
as cyclostationary process and « is the cyclic frequency.
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SCF-based Feature Characterization Mechanism

e Spectral Correlation Function (SCF) can be obtain by calculating the Fast Fourier
Transform of RZ[1].

se[f]= > Re[IJe "

|=—0

Where f is the temporal frequency of the signal.

* In our proposed system, the SCF patterns are generated to represent the
Doppler effect on RF that is introduced by the propellers/wings of
different types of UASs.
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SCF-based Feature Characterization Mechanism

e Radar architecture is implemented in a lab environment, and experiments
are carried out with 3 UASs with distinguishable characteristics.

No of wings/ Rotor blade length/ Weight (kg)
propellers Wingspan (cm)

Air Hog Firewing (UAS1) 41 0.039
Sky Rover Cop (UAS2) 3 25 0.052
Radioshack Surveyor (UAS3) 4 7 0.037

Figure: Images of the drone objects used for the experlment a) A|r Hog F|rewmg (UAS1);
b) Sky Rover Cop (UAS2); c) Radioshack Surveyor (UAS3).
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SCF-based Feature Characterization Mechanism

Figure : SCF patterns obtained from the experiment for (a) reference; (b) UAS1; (c) UAS2; and (d) UAS3.
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Binarized-Deep Belief Network (DBN)

Reference UAS1 UAS2

N |

UAS3

Output Layer

:
)

T W5, out

¥

Hidden Layer 5

1 Wys

v

Hidden Layer 4

f Ws .

v

Hidden Layer 3

A W,

¥

Hidden Layer 2

f W;»

v

Hidden Layer 1

f Win, 1

v

Input Layer

tT1t1111

SCF Patterns

Figure: Architecture of the used binarized-
DBN. Where W, , contains values -2-3, 0 and
23 and other Weight matrices contain values -

1,0, and 1.

QW_IH—’W—’H—’H—’

RBM 4

RBM 3

RBM 2

RBM 1

GBRBM

The University of Akron — Ohio's Polytechnic University

We employ a Deep Belief Network
(DBN) to detect and classify the UASs.

DBN used in our identification scheme
is formed by stacking three
conventional Restricted Boltzmann
Machines (RBMs) and a Gaussian-
Bernoulli RBMs (GBRBMs) [3].

Softmax layer is used as the output
layer of DBN.

DBN is trained through semi-supervised
learning with SCF pattern data.

Backpropagation fine-tuning algorithms
is modified to achieve binariezed-DBN

[4].
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Deep Belief Network (DBN)

e Conventional RBMs consist of one visible layer and one hidden layer of
binary units that do not have intra-layer connections [5].
* By training with unlabeled data, RBMs are able to learn the features

embodied by the training data.
* Energy function of a conventional RBM is as follows:

E(v,h) = —anzm:wijhivj —Zm:cjvj —Zn:bihi
j=1 i=1

i=1 j=1
Where v; is the jth element of the vector consisting of input unit values, h; is the ith element

of the vector consisting of hidden unit values, w; is the ijth element of the weight matrix
between the visible and hidden units, while b, and c; denote the ith and jth element of the

bias vectors for the hidden layer and visible layer, respectively. Note that n and m are the
number of hidden units, and number of visible units in theRBM, respectively.
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Deep Belief Network (DBN)

e Based on Energy function, the activation conditional probability
distributions of hidden and visible units of a RBM are shown in the
followings:

p(h=1|v)= sigm[bi +Zm:vvijvj],
i=1

p(v, =1h)= sigm(cj +Zn:wijhi}
i=1

Where sigm(x) =1/(1+e™) is the sigmoid function.
* The update rules for weights and biases of a RBM are as follows:
W; =W - p(< thi >m _<thi >4),
b =b —p(<h >, —<h>,),
C;=C;—p(<V; >, —<V; >,).
Where p denotes the learning rate, and <.>, and <.>_ are the
expectations computed over the data and model distribution, respectively.
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Deep Belief Network (DBN)

Based on Energy function, the activation conditional probability
distributions of hidden and visible units of a RBM are shown in the

followings:
GBRBM is a variation of RBM that has a visible layer comprised of real-

valued input units [6], [7].
Energy function of the Gaussian Bernoulli RBM is defined as follows:

E(v,h) = ZZ th,w” ibi Z(V )

Where o, is the standard deviation of the |th element of the visible units.

GBRBM are trained by using the following update rules:

V. V
W, =W, —p(<Lh > —<—Lh>)),
o O
bi:bi_p(<hi >m_<hi >d)’
V V
C; =C; —,0(<—> — <= >d)'
GJ O-j
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Deep Belief Network (DBN)

Based on Energy function, the activation conditional probability
distributions of hidden and visible units of a RBM are shown in the

followings:
GBRBM is a variation of RBM that has a visible layer comprised of real-

valued input units [6], [7].
Energy function of the Gaussian Bernoulli RBM is defined as follows:

E(v,h) = ZZ th,w” ibi Z(V )

Where o, is the standard deviation of the |th element of the visible units.
GBRBM are trained by using the following update rules:

Az, =¢" <%(vj—c) Zwuh,vj> - <%(vj—c) Zwuh,vj>

Where z; = log(a?).
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Modified Fine-Tuning Algorithm for Low-
Complexity DBN
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Distribution of weights

31734 34.64 No connection
+1 12368 13.50 Connection
-1 13150 14.36 Negation

Right shift
+28 17170 18.75 by 8
bits
Right shift
-28 17178 18.75 by 8 bits

and negation

Table: Distribution of weights and their hardware mapping .
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Results and Comparison

Low-complexity DBN is trained with 200 data from each class.

To evaluate the noise-resilience of our proposed system, we artificially
add Gaussian noise with different signal to noise ratio (SNR) levels to
150 experimental data from each UAS and reference.
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Figure: SCF patterns obtained from the experiment for (a) reference; (b) UAS1; (c) UAS2; (d) UAS3, and SCF
patterns obtained in a noisy environment with SNR 0 dB are also shown for (e) reference; (f) UAS1; (g) UAS2; (h)
UAS3
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Low-Complexity DBN Results

Detection Accuracy (%)

low-complexity DBN shows above 86% accuracy for detecting micro UASs
even when the SNR level is as low as -5 dB. The detection accuracy
remains above 90% when SNR > -3 dB.

percentage of false alarm remains less than 10% for SNR > 0 dB.
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Figure: Accuracy of detection of micro UASs when the SNR of the environment noise increases from
-5to 5 dB.
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Comparison Results

*  The Accuracy of low-complexity DBN, regular DBN, and MAXNET neural network method, are compared
for classifying UAS SCF patterns.

*  low-complexity DBN and regular DBN outperform the MAXNET ANN based method.

*  Low-complexity DBN performs better for classifying the UAS1 while the regular DBN performs better at
classifying UAS2 and 3. Both low-complexity DBN and regular DBN show above 90% accuracy for all

considered UAS SCF signature patterns when SNR > 0 dB.
o 1 2 5 e
Figure: Classification accuracy of different micro UASs for low-complexity DBN (ADBN), regular DBN, and MAXNET
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Conclusion

In this paper, we propose a deep learning-based Doppler radar sensor
system to detect and classify micro UASs.

In our proposed system, the SCF patterns are generated to represent the
Doppler effect on RF that is introduced by the propellers/wings of different
types of UASs.

A low-complexity DBN technique is employed to characterize the features
embodied by the generated SCF patterns and automatically detect and
identify different types of UASs.

The experiment results illustrate that our proposed system is able to
effectively detect micro UASs with the accuracy above 90% when SNR > -3
dB. Percentage of false alarm remains less than 10% for SNR > O dB.

In our future work, we plan to conduct the experiments to closely simulate
real world scenarios by using moving micro UASs.
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