

100 YEARS OF U.S. AIR FORCE SCIENCE & TECHNOLOGY

Integrity ★ Service ★ Excellence

A Multi-Agent Q-Learning Based Rendezvous Strategy for Cognitive Radios

27 Jun 2017

Clifton Watson Air Force Research Laboratory

Outline

- Introduction
- Blind Rendezvous Problem
- Existing Approaches
- Proposed Method A MAQLR Strategy
- System Model & Assumptions
- Application of Q-Learning to Blind Rendezvous
- MAQLR Strategy Description
- Simulation Results
- Conclusion

Introduction

- Public and private sectors rely on spectrum access.
- Increasing demands require efficient spectrum use.
- This can be provided by cognitive radios (CRs) that can
 - sense, learn, and adapt to spectrum
 - access unused/underused licensed spectrum as unlicensed secondary users (SUs)

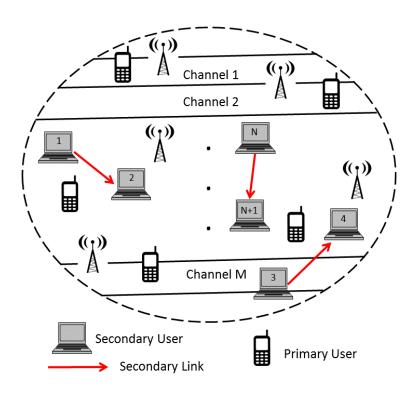
Blind Rendezvous Problem

- SUs must quickly find each other to communicate in multi-channel spectrum environment.
 - No dedicated control channel or central entity can be used.
 - All channels can be used for rendezvous and data exchange.
- Challenges
 - PU and SU activities are random and unpredictable.
 - Minimize PU interference (PUI)
 - Avoid SU collisions

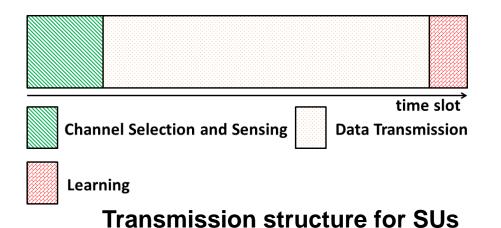
Existing Approaches

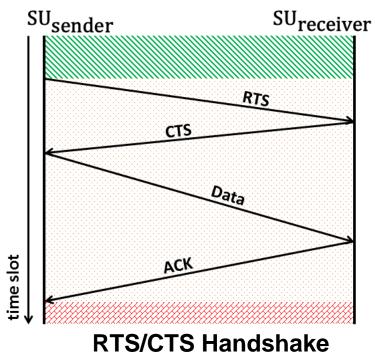
- Channel hopping (CH) is most common approach.
 - Predetermined CH sequences
 - Not biased towards any channels
 - Vulnerable to PUI and collisions
 - Adaptive CH sequences
 - Biased towards channels with least detected PU activity
 - Robust to PUI but more vulnerable to SU collisions

Proposed Method: A MAQLR Strategy


- Multi-Agent Q-Learning Rendezvous (MAQLR)
 Strategy
 - SUs actively learn which channels are best for rendezvous.
 - Learning is based on exploration of spectrum environment.
 - Learned channels are generally less prone to PUI and SU collisions.

System Model & Assumptions


- N SU pairs (sender and receiver SU)
- M licensed channels $(1 \le m \le M)$
- Localized channel availability (θ_m)
- Slotted channel access by PUs and SUs
- Rendezvous in single slot with RTS/CTS
- SU Assumptions
 - start rendezvous at same time
 - sense the same PU activity
 - can distinguish between PU and SU
 - can access one channel at a time
 - do not exchange info with each other



System Model & Assumptions (cont'd)

- SUs sense correctly with probability s.
- Sender SUs transmit RTS with probability p.

Application of Q-Learning to Blind Rendezvous (Cont'd)

- Reward Strategy
 - Reward received for channel m at end of slot j

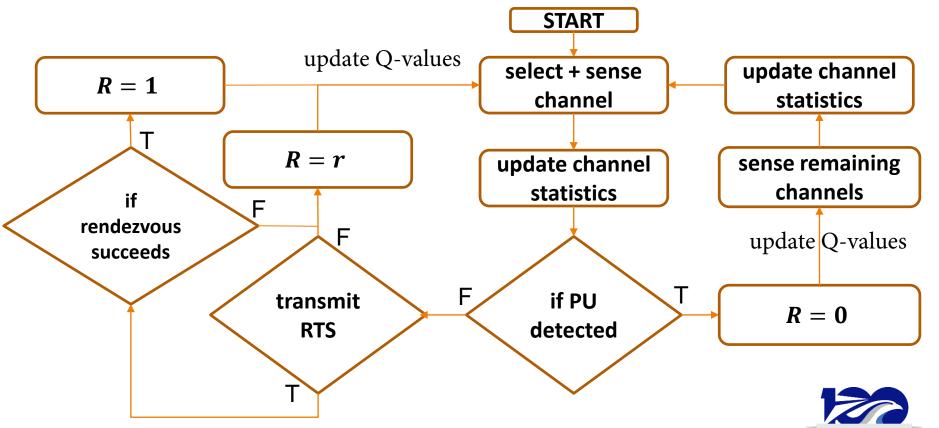
$$- R_m(j) = \begin{cases} 0, \text{ PU activity is detected} \\ r, \text{ PU activity is not detected and rendezvous fails} \\ 1, \text{ PU activity is not detected and rendezvous succeeds} \end{cases}$$

- r is a random reward, (0 < r < 1) *
- Rendezvous fails when
 - RTS not transmitted
 - Paired SUs select different channels
 - Collision occurs
 - Poor channel quality
- Rewards capture dynamics of PU and SU activity, as well as channel quality.
- * For sake of brevity, audience is referred to paper for computation of r.

Application of Q-Learning to Blind Rendezvous (Cont'd)

- Q-values updated for channel m at end of slot j
 - $Q_m(j+1) = (1 \alpha_m(j))Q_m(j) + \alpha_m(j)R_m(j)$
 - $\alpha_m(j)$ is the learning rate, $(0 \le \alpha_m(j) \le 1)$
 - determines how much old info is valued over new info
 - starts at 1 and decreases over time
- Probability of selecting channel m in slot j

$$- P_m(j) = \frac{e^{Q_m(j)}/W}{\sum_m e^{Q_m(j)}/W}$$


- balances tradeoff between exploration and exploitation
- W is temperature parameter
 - · decreases exploration over time
 - set to $\alpha_m(j)$ to decrease exploration by learning rate

MAQLR Strategy - Description

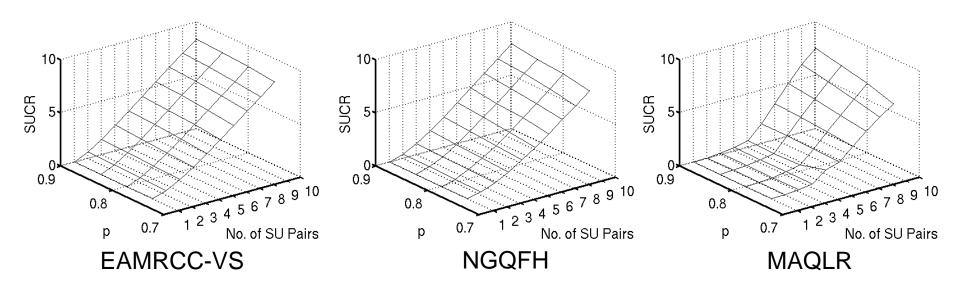
Simulation Results

Simulation Setup

- 5-channel spectrum environment with localized availability
- $-\theta_1 = 0.5, \theta_2 = 0.3, \theta_3 = 0.6, \theta_4 = 0.4, \theta_5 = 0.7$
- s = 0.9
- p varies: 0.7, 0.8, 0.9, 1
- Number of SU pairs vary from 1 to 10.
- Sender SUs assumed to always have data to send.
- Compared against existing adaptive techniques
 - Enhanced Adaptive Multiple Rendezvous Control Channel with Variable Slots (EAMRCC-VS)
 - Nested Grid Quorum Frequency Hopping (NGQFH)
 - Follow same sensing procedure as MAQLR strategy

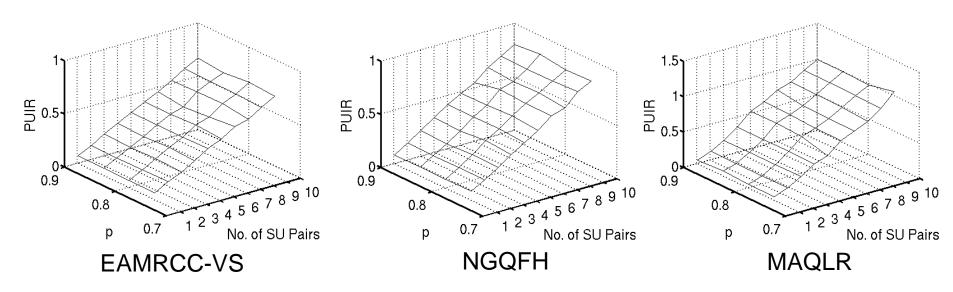
• Numbers of SU pairs on learned channels (s = 0.9, p = 0.9)

No.	$\theta_1 = 0.5$	$\theta_2 = 0.3$	$\theta_3 = 0.6$	$\theta_4 = 0.4$	$\theta_5 = 0.7$
1	0	0	0	0	1
2	0	0	1	0	1
3	1	0	1	0	1
4	1	0	1	1	1
7	1	1	2	1	2
8	2	1	2	1	2
9	2	1	2	2	2


SUs learn to use channels in effective and efficient manner.

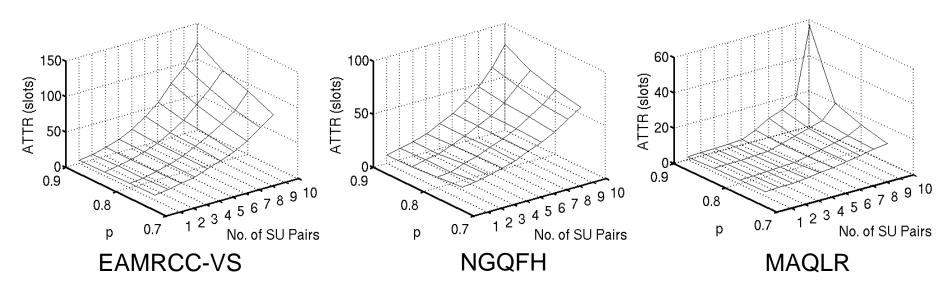
- SU Collision Rate (SUCR)
 - Average number of SU collisions per RTS transmission

SU's use of channels cause MAQLR strategy to have lower SUCR.

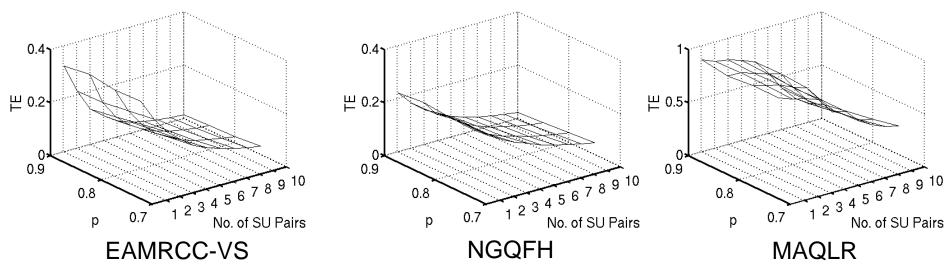


PUI Rate

Average number of PUIs per RTS transmission


SU's use of channels result in slightly higher PUIR for MAQLR strategy.

- Average Time-to-Rendezvous (ATTR)
 - Average number of slots to complete RTS/CTS handshake


MAQLR strategy has much lower ATTR mainly because of lower SUCR.

- Throughput Efficiency (TE)
 - Ratio of actual throughput and maximum achievable throughput
 - Throughput is DATA packets exchanged per time slot.

MAQLR strategy has higher TE primarily because of lower SUCR.

Conclusion

- SUs enhance rendezvous performance with MAQLR strategy.
 - Actively learns which channels are best for rendezvous
 - Learns channels based on perceived PU activities and rendezvous successes/failures
 - Learns how to access channels effectively and efficiently
- Enhanced performance comes at the cost of higher PUIR.
- Future plans to improve strategy by lowering PUIR while still achieving desired (if not better) performance.

Questions

