**IEEE Cognitive Communications for Aerospace Applications Workshop 2017** 

## Naturalistic Flying Study as a Method of Collecting Pilot Communication Behavior Data

Chang-Geun Oh, Ph.D Kent State University



## Why Investigate Human Factors?

- Communication: exchanging information among actors
- Human factors directly cause or contribute to many aviation accidents.
- Should investigate human behaviors to design cognitive communication systems.





#### **Aircraft Pilot Behavior Studies...**

- Datalink Communication (DataComm) will be the mandatory communication method in NextGen; pilots' behavioral tendencies may change
- Field Study
  - · High cost, insurance for participants

#### Human-In-The-Loop (HITL) Simulation Tests

- Can collect specific behavior or performance data
- Implementing many independent variables will be very hard
- Hawthorne effect
- Hard to create operational tension

#### Mathematical Models

- Include possible situational variables
- Cannot show actual unpredictable human responses

#### The Naturalistic Study Method

- Monitoring human behaviors within an unobstructed environment for a prolonged duration
- Has been used to resolve the practicality problems.



#### Aircraft Pilots' Cognitive Properties for the Future Air Transport Cognitive Communication Systems

- Perception, reasoning, memory, adaptation, etc.
- How do pilots communicate with ATCs and other air traffics?
- NextGen requires higher technical demand: aircraft pilots will be in more vigilant environment.
- Cognitive communication systems using computerized automated functions need to be developed.
- For the high-level conceptual design, monitoring the properties during a full course of flight mission will be required.
- The constitution of naturalistic setting for the transportation research became more applicable with the advancement of technologies.



## **Naturalistic Driving Study (NDS)**



- A successful naturalistic study project for the transportation field
- 100-Car Naturalistic Driving Study Project (finished in 2005)
  - 241 drivers, 100 cars for 12-13 months in Northern VA
  - 5 channel-video sensor kit installed around the driver's seat
  - Vehicle kinematics recorded in conjunction with the driver's data
  - Driving behavior (e.g., eye direction, severe drowsiness, impairment, and judgment error) in crash, near-crash, or other incident situations were monitored and recorded.
  - 6.4 terabytes of collected video files, electronic driver and vehicle performance data

#### • The second Strategic Highway Research Program (finished in 2014)

- 2,800 drivers, 450 vehicles in six different states for 1 to 2 years
- More advanced data acquisition devices
- 4 petabytes data adding inattention and cellphone use, and driver interaction with roadway features in conjunction with roadway data

#### Data is open to researchers for their own analysis projects



## **Naturalistic Flying Study (NFS)**



- NFS needs to be initiated implementing all situational variables during flight operations based on the NDS references.
- A large database of pilot behavior information during full flight operations
- Should be open to aviation researchers for human factors and safety studies; highlighting the future cognitive communication environment in the aviation/aerospace fields.

#### Answer to questions related to the pilot behavior in the cockpit.

- How do pilots interact with DataComm systems especially in the highly-congested terminal airspace?
- What is the common error during DataComm procedures?
- What is the communication error associate with other situational variables?; certain location / operational stage / weather condition



## **Pilot Error Pattern**

- Most aviation accidents were due to the human error committed by pilots
- NFS needs to be investigated wrt pilot error pattern.
- Cockpit task management error is an important causal factor for safety-critical incidents.
- Pilot Errors in GA (Ison, 2005):
  - 1. weather
  - 2. controlled flight into terrain
  - 3. poor communication
  - 4. low-level maneuvering
  - 5. inadequate preflight inspections
  - 6. inadequate preflight planning
  - 7. failure to use a checklist
  - 8. failure to perform the "I'm safe" checklist
  - 9. running out of fuel
  - 10. mismanagement of technology

D. Ison, "Top 10 Pilot Errors," Plane & Pilot Magazine, 01-Aug-2005. [Online]. Available: <u>http://www.planeandpilotmag.com/article/top-10-pilot-errors/#.WQcZEoWcFUI</u>.



## **Videotaping Pilots' Environments**

- The pilot errors could be better investigated using videotaped pilot behavior data.
- Videotaped CRM scenarios have been utilized to train pilots' interpersonal skills and investigate personality traits for enhanced pilot performance.

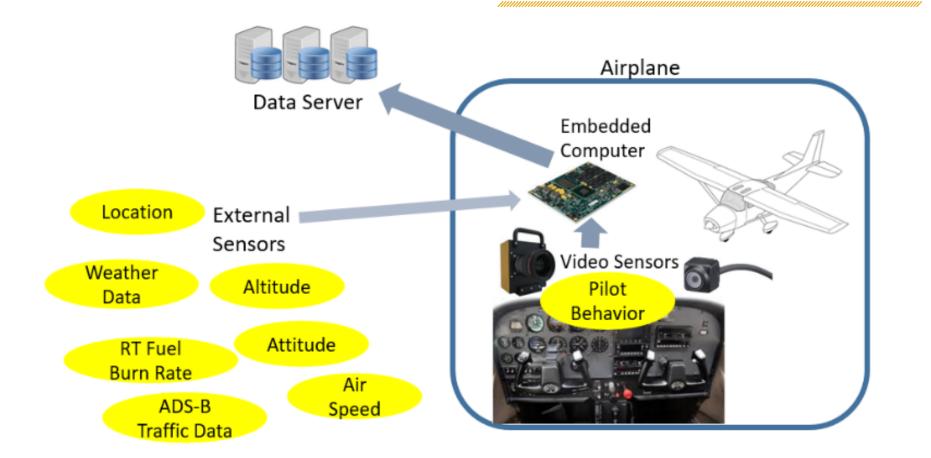
#### NTSB recommended installation of video recorders.

- To overcome the weakness of existing voice-only flight recorder
- The cockpit video recorders would work for transparent flight data retrieval associated with the use of recent glass cockpit and controller-pilot data link communication (CPDLC) systems during accident investigations.
- However, pilot communities have not agreed with the installation of incockpit video recording system
  - Misinterpretation and adverse effect of illustrating their task situations.
- ICAO has not accepted it as the standard equipment list in future commercial aircraft cockpits.
- This problems shall be resolved.



## **Comparison of NFS and NDS**

| Criteria                                                | NFS                                                                                                                | NDS                                                                      |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Number of People to<br>Monitor                          | One or Two                                                                                                         | Mostly One                                                               |  |
| Essential External<br>Variables to Connect              | 3D Flight Data, Weather<br>Data, Air Traffic Data,<br>Other Data Connected to<br>the Central Information<br>Center | 2D Kinematic Driving Data,<br>Traffic Signals                            |  |
| Number of People Who<br>May Operate the Same<br>Vehicle | Mostly Multiple                                                                                                    | Mostly One                                                               |  |
| Vehicle Classification                                  | Single-Engine vs. Multi-<br>Engine<br>Light vs. Heavy                                                              | Sedan, SUV, Truck, Bus                                                   |  |
| Performance Factors to<br>Monitor                       | Aviation, Navigation,<br>Communication                                                                             | Driving Along the Lane,<br>Complying with Traffic Signals,<br>Navigation |  |




## **Preliminary NFS**

- The preliminary phase is to assess the experimental attributes and validate the practicality of study condition before entering a large data collection project.
- Installs multi-channel video sensor systems in the cockpit to monitor pilots' interaction with cockpit systems.
- Collection flight operational data (altitude, attitude, airspeed, current location, weather, and real-time fuel-burn rate data, etc.) and synchronization with the pilot behavior data for the in-depth analysis.
- No reservation of extra ports to connect each sensor component to additional instrument displays: using off-the-shelf micro electromechanical systems (MEMS) that produce these sensor signals for additional displays such as iPad within the cockpit.
- The collected data saved in the embedded computer disks need to be transferred to the data server periodically for the comprehensive management.



#### **Illustration of NFS**





#### The Recommended Guidelines for NFS

- The data to collect should include all formal/informal data that are directly/indirectly related to the pilot operations for the future use of big data analytics.
  - Integrating the NFS data to all kinds of aeronautical, weather, and airport data will create additional insights to improve the research on pilots' communication behavior.
- Since the DataComm procedure is not mandatory yet, a pseudo naturalistic study (providing pilots with a specific task as a training during the NFS data collection) could provide insights on how pilots interact with DataComm.
- The high level of security should be maintained in the data management system because the aviation is subject to the national protection in most countries.



# The Collected NFS Data for Cognitive Communication System Design

- The aviation research communities may use the collected NFS data for cognitive communication system design.
- Examples of expected NFS data for the communication system design
  - Pilots' properties associated with cockpit task management: cockpit task prioritization and handling multiple concurrent tasks.
  - Pilots' tendencies while encountering off-nominal events and resolving their problems for communicating with ATC
  - Pilots' tendencies on how to comply the officially defined DataComm procedure
  - Situations that pilots commit errors in contacting or replying to an ATC or an air traffic



#### **Potential Problems**

- Connecting the NFS database with other heterogeneous dataset including SWIM database, ASRS database, and the data from sensor for monitoring engine health requires a high level of technology and cost.
- The consideration of in-cockpit videotaping system installation in all classes of aircraft still needs negotiation with pilot communities.
- Evaluating pilots' objective cognitive performances in certain criteria such as situation awareness may not always be available using NFS data.



### Conclusions

- NFS is a promising method for aircraft pilot behavior research to enhance the quality of the cognitive communication system design.
- Based on the reference of NDS accomplishments, the NFS needs to tailor the experimental attributes to be established as the cognitive communication evaluation method in the aviation/aerospace fields.
- The NFS should also consider a big data acquisition/analytics system, customized naturalistic testing conditions, and a high level of security standard.



#### **THANK YOU**

