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Image Processing and Face Detection

I The method of converting an image into a digital form to get
an enhanced image or extract useful information by performing
some operations is called image processing

I Processing an image signal using mathematical operations for
which an input can be either image, video or graph and the out-
put is either image or set of characteristics of the corresponding
image

I Image processing includes applying different sets of signal pro-
cessing methods on images by treating them mostly as two
dimensional (2D) signals
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Applications of Image Processing

1 Face Detection and Recognition

2 Defense Surveillance

3 Moving Object Tracking

4 Content based Image Retrieval

5 Image and Video Compression

6 Image Sharpening and Restoration

I Explored face detection technique that uses concept of feed
forward neural network which is one of the most fundamental
image processing technique
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Challenges in Face detection

Illumination Variation

Variation in Image Position and Scale

Expression Variation

Variation in Quality of Image
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Proposed Approach

I Explore a digital architecture for real-time face detection and
recognition system

I Approximate hardware realization scheme learning algorithm
of convolutional neural networks (CNN) [1] to improve the
efficiency of the hardware implementation of neural networks
and to reduce the hardware complexity

I Evaluate accuracy of the system under different constraints

I Analyze hardware complexity of the system
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Block Diagram of the Proposed Approach[1]
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Proposed Approach - First Stage

I Images are matrices of order
32 × 36

I SS1 is sub-sampling opera-
tion

I K1, K2, K3, K4 are four ker-
nels of order 5 × 5

I b11, b12, b13, b14 are biases

I α1,α2,α3,α4 are scale factors

I D is the decision block

I D1, D2, D3, D4 are four out-
put images after first stage
and are of order 14 × 16
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Figure: First Stage
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Proposed Approach Second Stage
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Figure: Second Stage

I Images are of matrices of order 14 × 16

I Mk , Ok,1 and Ok,2 are kernels of order 3 × 3

I b̂2,p, b3,p and b4 are biases

I βp and D are scale factors and decision block respectively

I N1,p are neurons of order 6 × 7

I N2,p is a single neuron
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Hardware Implementation

Convolution and Sub-sampling

J(ik , jk) =
M∑

m=1

N∑
n=1

K (m, n).I [(ik − 1) + m, (jk − 1) + n] (1)

Hk(zx , zy ) =
(1 + z−1

x )(1 + z−1
y )

4
(2)

where,
J is the convolution operation
H is the sub-sampling operation
K is kernel matrix of order m × n
I is image matrix
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Convolution and Sub-sampling

From Equations 1 and 2

QC =
L+1∑
i=L

S+1∑
j=S

x(i , j)

where,
L = 2(T\A) + (C − 1)\R + 1
S = 2[(T − 1)%A] + (C − 1)%R + 1
T = Time Stamp
R = Order of Kernel = 5
C = Column Number

Q1 = x11 + x12 + x21 + x22

Q25 = x55 + x56 + x65 + x66

Q21 Q24
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Figure: Combined Convolution and
Sub-sampling Block
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Scaling and Bias Block

S1 = (α1, α2, α3, α4)
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Decision Block
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The decision block is basically linear-2 approximation[2] and given
as:

σ(x) = â.


−1 if x < −2

x/2 if − 2 ≤ x < 2

1 if x ≥ 2

where, â = 7/4
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Hardware Implementation

Detailed Block Diagram of Second Stage
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Convolution and Sub-sampling
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Figure: 1st part of 2nd Stage of Combined Convolution Sub-sampling Block
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Figure: 2nd part of 2nd Stage of Combined Convolution Sub-sampling Block

I Followed by a scale, bias and decision block like in first stage
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Neuron Block including Bias and Decision Block

Input 42 OutputDec

N1,p
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NBp

Figure: Neuron Block

I Total 14 matrices of size 6×7 and is represented by Np where
p = 1, 2, ..14

I Contains bias for each neuron block represented by the set NBp

NBp = ˆb3,p

I Followed by an activation function represented by decision block

I Scalar multiplied with the matrix generated after second stage of
decision block element by element and passes through the added
decision block
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Neuron Multiplication Block with Final bias and Decision
Block

I Ĵp is the output of Neuron Block

I The set Ĵp is multiplied with corre-
sponding neurons set called ’N2,p’

I All the elements of the resulting set V̂p

is added together to get a value ’W’

I The value W obtained after Neuron
Multiplication is biased with bias B4

I The output is then passed through the
decision block giving rise to obtain final
output

Final Output
I If the final output is positive, the

image taken at the beginning is a face

else the image taken is not a face
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Figure: Neuron Multiplication
Block
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Figure: Final Bias and Decision
Block
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Analysis and Results

I Tests were carried out using
different set of images

I All the input images were
standardized to size 32×36
and in .pgm (Portable Gray
Map) format

I The algorithm was first mod-
elled and tested in MATLAB
Simulink using Xilinx block
set

I Tested on Xilinx Virtex-6
ML605 FPGA Evaluation Kit

I 1164 images and were pro-
cessed

Figure: Sample test images
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Accuracy Details

MATLAB Accuracy Details

Tested Images 1164
MATLAB Correctly Detected 1124
Accuracy of MATLAB 96.56%

Change in Accuracy of Design After Changing the Word-Length of Scale and Biases

Word Length Correctly Detected
Xilinx

Accuracy
Part Scale Bias

Integer 8 8
1123 96.47%

Fractional 5 5
Integer 7 7

1120 96.21%
Fractional 4 4

Integer 6 6
1096 94.15%

Fractional 3 3
Integer 5 5

1084 93.12%
Fractional 2 2

Integer 4 4
567 48.71%

Fractional 1 1
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Hardware Complexity

Hardware Consumption Along with Timing Details

Scale and Bias
Stage

Hardware Consumption

Integer Fractional LUTs FFs
Tcpd
(ns)

Fmax
(MHz)

8 5
1 3345 2770 3.17 315.25
2 8327 8435 4.84 206.35

7 4
1 3335 2767 3.16 316.45
2 8277 8413 4.76 210.03

6 3
1 3288 2765 3.12 320
2 8144 8401 4.76 210.03

5 2
1 3278 2761 3.09 322.99
2 7685 7909 4.47 223.31

4 1
1 3278 2758 3.04 328.29
2 5496 5678 4.47 223.31
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Hardware Complexity and Accuracy

Change in Accuracy After Changing the Word-Length of Kernel from the First stage

Word - Length Correctly Detected
Xilinx

Accuracy
Integer Fractional

10 5 1123 96.47%
9 4 1122 96.39%
8 3 1113 95.61%
7 2 1118 96.04%
6 1 1103 94.75%

Hardware Consumption Along with Timing Details

Kernel from
first stage

Hardware Consumption

Integer Fractional LUTs FFs
Tcpd
(ns)

Fmax
(MHz)

10 5 3351 2770 3.25 306.93
9 4 3160 2786 3.22 309.88
8 3 2974 2797 3.15 316.85
7 2 2826 2779 3.14 317.76
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Hardware Complexity and Accuracy

Change in Accuracy After Changing the Word-Length of Kernel from the Second Stage

Word - Length Correctly Detected
Xilinx

Accuracy
Integer Fractional

8 5 1123 96.47%
7 4 1122 96.39%
6 3 1120 96.21%
5 2 1105 94.93%
4 1 1101 94.58%

Hardware Consumption Along with Timing Details

Kernel from
second stage

Hardware Consumption

Integer Fractional LUTs FFs
Tcpd
(ns)

Fmax
(MHz)

7 4 7918 8419 4.57 218.96
6 3 7492 8149 4.56 219.29
5 2 7187 7880 4.49 222.71
4 1 6944 7491 4.43 225.73
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Hardware Complexity and Accuracy

Change in Accuracy After Changing the Word-Length of Neuron Biases

Word - Length Correctly Detected
Xilinx

Accuracy
Integer Fractional

7 5 1123 96.47%
6 4 1123 96.47%
5 3 1121 96.30%
4 2 1122 96.39%
3 1 1120 96.21%

Hardware Consumption Along with Timing Details

Neuron Hardware Consumption

Integer Fractional LUTs FFs
Tcpd
(ns)

Fmax
(MHz)

7 5 8149 8263 5.42 184.5
6 4 8104 8217 4.85 206.14
5 3 8063 8174 4.52 220.94
4 2 8015 8135 4.51 221.48
3 1 7998 8091 4.50 221.92
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Conclusions

I A hardware system capable of face detection and recognition
was designed

I The implementation paves a path for an efficient architecture
designed to detect highly variable face patterns

I The system is a fully trained architecture comprising of a pipeline
of convolution, sub-sampling and neural networks, such that no
pre-processing of the image is required

I The experimental results show high accuracy (≈96%)

I The proposed model can be a good solution in various facial
recognition and detection application
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