A Pattern Matching Approach to Map Cognitive Domain Ontologies to the IBM TrueNorth Processor

CCAA 2017

Nayim Rahman¹, Tanvir Atahary¹, Tarek Taha¹, and Scott A. Douglass²

¹Electrical and Computer Engineering Department, University of Dayton

²711 HPW/RHAC, Cognitive Models and Agents Branch, Air Force Research Laboratory

- Computerized agent-based decision aids
- Represent knowledge in databases
- Mine this knowledge to find solutions to specific problems
- Use computer clusters to accelerate this mining

Cognitively Enhanced Complex Event Processing

- Cognitively Enhanced Complex Event Processing (CECEP) Architecture:
- Models and agents are specified in research modeling language (RML)
- RML has been developed using the Generic Modeling Environment (GME)
- Consists of the following central net-centric components:
- <u>soaDM:</u> an associative memory application that allows RML models and agents to store and retrieve **declarative** knowledge.
- <u>soaCDO:</u> a knowledge representation and mining application that allows RML models and agents to store and exploit **domain knowledge**.
- <u>Esper:</u> a complex event processing framework that allows RML models and agents to base actions on context assessment and **procedural knowledge**. Procedural knowledge is represented in RML behavior models and processed using pattern matching and event abstraction capabilities provided by Esper.

Cognitively Enhanced Complex Event Processing

- Cognitively Enhanced Complex Event Processing (CECEP) Architecture:
- <u>Declarative Knowledge:</u> specified as events and relations
- Procedural Knowledge: specified as behavior models
- <u>Domain Knowledge</u>: specified in CDOs and processed by constraint-satisfaction framework
- <u>Adapters : includes a number of IO "Adapters" or event input and output streams, allow models and agents specified in RML to be integrated into software-based instructional systems</u>

Cognitive Domain Ontology

Example CDO

CDOs Model Domains and Have Constraints

Constraints:		
If (sport ==baseball)	then (size =small)	and (color =white)
If (sport ==football)	then (size =medium)	and (color=brown)
<pre>If (sport ==basketball)</pre>	then (size =large)	and (color=orange)

Track CDO

Track CDO Constraints

Name	Specification
C1	iff ews_choices is arinc_564 then model_choices is b_747
C2	iff ews_choices is apq_120 then model_choices is f_4
C3	iff ews_choices is apg_63 then model_choices is f_15
C4	iff ews_choices is foxfire then model_choices is mig_25
C5	if model_choices is f_4
	then threat_choices is assumed_hostile hostile assumed_friendly or friendly
	type_choices is strike
C6	if model_choices is f_15
	then threat_choices is assumed_friendly or friendly
	threat_choices is not (assumed_hostile or hostile)
	type_choices is strike
C7	if model_choices is b_747
	then threat_choices is friendly or assumed_friendly
	threat_choices is not (assumed_hostile or hostile)
	type_choices is commercial
C8	if model_choices is mig_25
	then threat_choices is assumed_hostile or hostile
	threat_choices is not (assumed_friendly or friendly)
	type_choices is strike
C9	if speed is between 350 and 550,
	altitude is between 25000 and 36000
	then model_choices is b_747
	threat_choices is friendly
	type_choices is commercial

CDO as a **CSP** Tree

HPC Approach 1: Exhaustive Search

- Exhaustive depth first search
- Highly parallel

Constraints:If (sport ==baseball)then (size =small)and (color =white)If (sport ==football)then (size =medium)and (color=brown)If (sport ==basketball)then (size =large)and (color=orange)

Results

NVIDIA GPU (448 cores)

CDO Scaling

Data based on synthetic CDOs with *n* branches having *n* entities each.

Example tree from a CDO with 3 levels:

Tree Level	CPU runtime	1 GPU run time
10	42 m	20 s
11	22 h	10 m 22s
12	30 days*	5.75 h
13	3 years *	9 days*
14	75 years*	1 years*
15	2250 years*	42 years*
16	675 centuries*	1898 years*

*estimated run times

HPC Approach 2: Informed Search

UNIVERSITY of

HPC Approach 2: Informed Search

--Pruned 24 out of 27 child node

Possible solution space --Only 3 child node

This algorithm has three steps :

- <u>Pre-processing step :</u> simplifies constraints which in turn removes any interdependencies be-tween branches.
- <u>Path generation step</u>: prunes the search space based on constraints and make a path from root to leaf node.
- <u>Solution generation step</u>: lists all possible solutions in a compact manner based on the path generated in step 2.

Path Generation

Path:

Root-A-C-G-H-Exp-D-J-P-U-B-E-V3=2.45-F-varied

Solution based on the path:

Root is SubPart event and it's corresponding choice is below A is SubPart event and it's corresponding choice is below C is SubPart event and it's corresponding choice is below G is 'Variable' event and values associated with it is below V1 is 0 V2 is 0

H is a ChoicePoint event and it is expanded

H can be M or H can be N

D is a ChoicePoint event and it is J

J is a ChoicePoint event and it is P

P is a ChoicePoint event and it is U

Number of solution found from branch 1 = 2

B is SubPart event and it's corresponding choice is below

E is 'Variable' event and values associated with it is below V3 is 2.45

F is a ChoicePoint event and it is varied

F can be *K* or *F* can be *W* Number of solution found from branch 2 = 2

Total possible number of solution= $2 \times 2=4$

Performance (1 Xeon core)

Scar CDO

IBM TrueNorth

- 4096 cores
- 256 neurons / core
- 100mW

electrical signal

dendrites

Spiking Neurons

• TrueNorth System is spikes-in, spikes-out

Internal processing is based on spiking synapses neuron axon terminal axon nucleus dendrite axon of previous axon neuron neuron cell body nucleus dendrites of àxon next neuron tips

Cores and Connectivity

Mapping CDOs to Pattern Form

Mapping CDOs to Pattern Form

Income	Sport	Baseball	Football	Basketball
Inputs –	Size	Small	Medium	Large
Output	Color	White	Brown	Orange

Mapping CDOs to Pattern Form

Inputs				Output				
1	Sport			Size	I		Color	I
Baseball	Football	Basketball	Small	Medium	Large	White	Brown	Orange
1	0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0	1

Lookup Table with Neurons

- Neurons spike only for a specific pattern
- Neuron set to fire for input 1100:

Multiple Patterns in a Crossbar

• Each neuron in a crossbar can detect a different input pattern

CDOs in Neural Form

Sport	Baseball	Football	Basketball
Size	Small	Medium	Large
Color	White	Brown	Orange

Larger CDO: Vehicles

Choice- points	Entities			
Country	'japan', 'usa', 'south korea', 'germany'			
Mileage	'25_above/35_above', '25_below/35_above', '25_below/35_below'			
Туре	'family sedan', 'mid-size suv', 'luxury coup'			
Year	2016			
HP	'160-180', '181-200', '201-220', '221-240', '240-above'			
Price	\$21000-\$23000', '\$29000-\$32000', '\$38000- \$43000'			
Model	Next Slide output Classes.			

14 constrains 12 classes

Class	Content			
1	honda_accord, nissan_altima,			
	mazda_mazda6			
2	toyota_camry, subaru_legacy			
3	chevloret_malibu			
4	ford_fusion			
5	chrysler_200			
6	kia_optima, hyundai_sonata			
7	honda_pilot,			
	toyota_highlander			
8	dodge_durango, ford_explorer			
9	audi_a5			
10	bmw_4series			
11	lexus_rc			
12	inifinit_q6			

• 38 input axons. (19 input elements.)

Memristor TCAM

- Four memristors are required to store a bit
 - Input
 - Complement
 - Positive Bias
 - Negative Bias
- R_{ON} represents a strong connection
- R_{OFF} represents no connection
 - There will always be some current through the memristors set to R_{OFF}
 - Biases are used to negate this effect

CECEP using Memristor TCAMs

 Memristor based TCAM: High area efficiency, and hence high amount of knowledge per chip

TCAM System	Kim CMOS	Huang CMOS	Zheng RRAM	Xu MRAM	Memristor
Configuration	512×144	256×144	256×144	256×144	256×144
Technology (nm)	130	65	180	180	45
Search Time (ns)	4.8	.38	2.3	8	1
Energy Metric (fJ/bit/search)	0.59	0.165	3	7.4	2.15
Area (mm²)	2.55	0.434	0.167	1.548	0.0012
Normalized Area Factor	255	173	8.7	80.6	1

- Each network was trained for 8000 iterations
- Testing set = Training set

Layers	Learning Rate	Average Accuracy	Cores	Power (mW)
14	20, 2, 0.2	99.98%	218	52.7
13	20, 2, 0.2	99.97%	127	51.6
12	20, 2, 0.2	99.98%	106	51.3
9	20, 2, 0.2	99.99%	82	51.0
7	10, 1, 0.1	99.99%	74	50.9
6	10, 1, 0.1	99.99%	62	50.8
5	10, 1, 0.1	99.97%	56	50.7
3	10, 1, 0.1	99.99%	36	50.4
2	10, 1, 0.1	98.37%	7	50.0

- CECEP cognitive agent can be mapped to pattern matching form
- Can be implemented on IBM TrueNorth
 processor
- Can be mapped to memristor crossbars
- Future work: Look at how to solve (as opposed to look up solutions) using neurons