

Machine Learning For Space Communications Service Management Tasks

MTI Systems Team:
James Barnes (Jbarnes@mti-systems.com)
Wesley Eddy

Outline

- Motivation
- Challenges In Future Network Service Management
- Application of Machine Learning
- Current Status
- Conclusions and Future Work

Motivations

- What is service management?
- SCaN has a diverse catalog of user services and provide coverage for:
 - Space Network (SN)
 - Near Earth Network (NEN)
 - Deep Space Network (DSN)
- All of the SCaN elements rely on significant human involvement.
 - Past DSN work indicated 30 people were needed to schedule for 61 missions.

Takeaway: NASA networks heavily rely on human involvement to be properly scheduled.

Motivations

- Future impacts on service management:
 - Space Internetworking
 - Cognitive Communications
- Incorporate artificial intelligence (AI) and machine learning (ML) technology to extend networked services

Goal: To develop intelligent routing for future space networks, in order to meet internetworking and other service management challenges.

Future Challenges

- Prevent SCaN staffing growth
- SCaN expansions:
 - Higher order modulations
 - Additional coding options
 - Space Link Extension ground interfaces
 - IP and DTN space internetworking services
- New resource constraints will add possible uncertainties into the scheduling problems.

Takeaway: New technologies will test the current scheduling methods.

Network Flow Scheduling

- The Air Force Satellite Control Network (AFSCN) has defined two forms of scheduling problems:
 - Single Resource Range Scheduling (SiRRS)
 - Multiple Resource Range Scheduling (MuRRS)
- We can further abstract MuRRS requests to encompass network wide scheduling requests or Network Resource Range Scheduling (NeRRS)
 - Simplify the user created request
- Scheduling technology needs to be flexible while remaining accurate

Takeaway: A new approach must be taken to perform network flow level scheduling.

Progression of Scheduling Algorithms

Applying Cognitive Technology

- The general problem of range scheduling is NP-complete
- Metaheuristics algorithms are beneficial when:
 - The solution space is large
 - The evaluation function is noisy or varies with time

Takeaway: By searching for near optimal solutions, metaheuristic algorithms can actually sift through the solution space.

Algorithm Prototype

- Translating the requests
- Major underlying sub-algorithms:
 - GENITOR (University of Colorado)
 - Greedy Algorithm
 - Dijkstra's Algorithm
- Evaluate the population
- Store the genotypes of the least desirable schedules in a tabu list.
- Produce offspring via mating the current best schedules.

Visualizing Network Flows

Time (mins)

Current Status

- The algorithm has shown expected results AFIT datasets for SiRRS and MuRRS
- We have developed an algorithm for producing example network scheduling request sets.
- The entire system has a web-based interface that has proven to be useful in testing/ debugging.

Request ID	Asset ID	Start Time	Stop Time	Duration	Turnaround	Orbit Information
1	LION-A	15	60	15	15	979400000
2	LION-A	25	50	25	15	944600000
4	LION-A	30	53	23	15	936600000
5	LION-A	35	70	35	15	783700000
6	LION-A	45	480	435	15	503700000
8	LION-A	51	61	10	15	495500000
9	LION-A	60	360	300	15	503700000
146	LION-A	1365	1400	5	15	403500000
147	LION-A	1380	1460	20	15	212400000
148	LION-A	1380	1430	20	15	503700000
149	LION-A	1380	1450	10	15	639200000
150	LION-A	1380	1440	15	15	978300000
151	LION-A	1385	1440	35	15	601200000
152	LION-A	1410	1460	20	15	577500000
153	LION-A	1410	1440	10	15	731000000
154	LION-A	1415	1460	20	15	532900000
155	LION-A	1423	1433	10	15	484500000

ADD REQUEST ADD ASSET GENERATE SCHEDULE

Future Work

- Extend our technology beyond MuRRS by computing network flow schedules.
 - 100+ unique user requests for complex networks
- Implement a learning aspect to the fitness function
- Giving the user more network monitoring options
- Optimize codebase through LISP partial solution techniques.

Questions: jbarnes@mti-systems.com