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* What is service management?

e SCaN has a diverse catalog of user

services and provide coverage for:
- Space Network (SN)
- Near Earth Network (NEN)
— Deep Space Network (DSN)

* All of the SCaN elements rely on

significant human involvement.
- Past DSN work indicated 30 people were
needed to schedule for 61 missions.

Takeaway: NASA networks heavily rely on human involvement to be properly

scheduled.
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* Future impacts on service
management:

— Space Internetworking
— Cognitive Communications

* Incorporate artificial intelligence (Al)
and machine learning (ML) technology
to extend networked services

Goal: To develop intelligent routing for future space networks, in order to meet

internetworking and other service management challenges.
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* Prevent SCaN staffing growth

* SCaN expansions:
— Higher order modulations
- Additional coding options
— Space Link Extension ground interfaces
— IP and DTN space internetworking
services

* New resource constraints will add possible
uncertainties into the scheduling
problems.

Takeaway: New technologies will test the current scheduling methods.
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* The Air Force Satellite Control Network (AFSCN) has defined two forms of

S

cheduling problems:
— Single Resource Range Scheduling (SiRRS)
— Multiple Resource Range Scheduling (MuRRS)

* We can further abstract MuRRS requests to encompass network wide scheduling
requests or Network Resource Range Scheduling (NeRRS)

* S

— Simplify the user created request

cheduling technology needs to be flexible while remaining accurate

Takeaway: A new approach must be taken to perform network flow level

scheduling.
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The general problem of range
scheduling is NP-complete

NP-Complete
* Metaheuristics algorithms are

beneficial when:
* The solution space is large
* The evaluation function is noisy or
varies with time

Takeaway: By searching for near optimal solutions, metaheuristic algorithms can

actually sift through the solution space.
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Translating the requests

Major underlying sub-algorithms:
— GENITOR (University of Colorado)
- Greedy Algorithm

- Dijkstra’s Algorithm

Evaluate the population

Store the genotypes of the least desirable
schedules in a tabu list.

Produce offspring via mating the current
best schedules.
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* The algorithm has shown expected
results AFIT datasets for SiRRS and
MuRRS

REQUEST LIST

 We have developed an algorithm for sacesl sl iR efbuss covas Sevndic e
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producing example network e E s S S

. 5 LION-A 35 70 35 15 783700000
Scheduhng request sets. : T e T
8 LION-A 51 61 10 15 495500000

000000000

146 LION-A 1365 1400 5 15 403500000

147 LION-A 1380 1460 20 15 212400000

* The entire system has a web-based e e e mw o
interface that has proven to be useful T NN

151 LION-A 1385 1440 35 15 601200000

in testing/ debugging.
1460 20 15 532900000
155 LION-A 1423 1433 10 15 484500000

ADD REQUEST ADD ASSET
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MT Future

- 100+ unique user requests for complex networks

Implement a learning aspect to the fitness function

Giving the user more network monitoring options

Optimize codebase through LISP partial solution techniques.

Questions: jbarnes@mti-systems.com

Extend our technology beyond MuRRS by computing network flow schedules.




