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Cognitive Radio Network

v The definition of the Cognitive Network (CN) is proposed by Theo Kantor

v CN is defined as a network with a cognitive process that can learn from current 
network conditions making CN adapt to those conditions 

v CN is aimed to provide highly reliable communication and increase the efficiency of 
radio spectrum utilization

v J. Mitola and G. Q. Maguire, "Cognitive radio: making software radios more 
personal," in IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug 1999

v S. Haykin, "Cognitive radio: brain-empowered wireless communications," in IEEE 
Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201-220, Feb. 2005
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Cognitive Radio Network

Objective: Provide highly reliable communication and increase 
the efficiency of radio spectrum utilization, achieve LPI/LPD 4

Figure 4: System Model

The major advantage of a wireless mesh
networks is the intrinsic redundancy and,
consequently, reliability because a mesh
network is able to reroute traffic through
multiple paths to cope with link failures,
interference, power failures or network device
failures.
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System Model
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, 𝑁×1 steering vector for
the kth source, 𝑘 = 1,2, … , 𝑆.

The position of each antenna is described as 𝑃 = 𝑚𝑟 0 ≤ 𝑚 ≤ 𝑁 − 1
m:the index of each antenna, d :the distance between two adjacent antennas

𝒙' = 𝑫' 𝜽 𝒔' + 𝒘'
𝒙' are the data stream observed at time	1,2, … ,𝑀 with each 𝒙' ∈ 𝑪X, the

columns of 𝑫' ∈ 𝑪X×/ with 𝑆 ≪ 𝑁 span the S-dimensional measurement
domain at time n.
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Petrels Algorithms
(Parallel Subspace Estimation and Tracking by Recursive Least Squares)

8

𝑫Z = 𝑎𝑟𝑔min
𝑫
`𝜆X8a𝑓a(𝑫)
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𝜽
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𝛿 :the penalty coefficient in terms of signal sparsity.
𝑷': the observation selection matrix.

The 	𝜽 can be solved from by using the least
squares method,

𝜽Z = arg𝑚𝑖𝑛
𝜽
||𝑷'(𝒙𝒏 − 𝑫𝜽)||-

- + 𝛿 𝜽 +

	= 𝑫F𝑷'𝑫 ⋇𝑫F𝑷'𝒙'

where ∗ denotes the pseudo inverse matrix.

𝒙o𝒏 = 𝑫𝜽Z

𝑫Z = 𝑎𝑟𝑔min
𝑫
`𝜆X8a(||𝑷'(𝒙' − 𝑫𝜽Z	)||-

- + +𝛿 𝜽 +p
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Input A stream of vector 𝑥', observed patterns 𝑷𝒏 and
𝛿.

Initializatio
n

An 𝑀×𝑟 random matrix 𝑫r = 𝒅+r, 𝒅-r, … , 𝒅sr F and 
𝑹ur ∗ = 𝛼𝐼x,𝛼 > 0	for all m=1,…,M

1: For n = 1,2,..do

2: 𝑎z' = 𝐷'8+F 𝑃'𝐷'8+ ∗𝐷'8+F 𝑦'.
3: If stream reconstruction is required 𝑥z' = 𝐷'8+	𝑎z'.
4: For m=1,…,M do 

5: 𝛽u' = 1 + 𝛿8+𝑎'F 𝑅u'8+ ∗	𝑎z', 

6: 𝑣u' = 𝛿8+𝑎'F 𝑅u'8+ ∗	𝑎z'
7: (𝑅u' )∗ = 𝛿8+𝑎'F 𝑅u'8+ ∗ − 𝑝u' 𝛽u' 8+𝑣u' 𝑣u' F.
8: 𝑑u' = 𝑑u'8+ + 𝑝u' 𝑥u' − 𝑎z'F𝑑u'8+ 𝑅u' ∗	𝑎z' .
9: End for

10: End for 
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Compressive Covariance Sensing
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𝛼+ 𝛼-
𝛼+ 𝛼-

Figure: An uncompressed ULA with ten antennas receiving the signals from five sources in the far
field (left). A compressed array with five antennas marked in yellow removed (right).
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Compressive Covariance Sensing
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1. Reduce the number of antennas.
2. Allow the cost saving associated with 

the antennas: such as filter, mixers, 
ADCs.  

3. “Minimal Sparse Rulers (MSR)” is 
proposed to reduce the number of 
antennas required for 𝜮𝒙 estimation. 

Figure. A sparse ruler can be thought of as a
ruler with a part of its marks erased, but the
remaining marks allow all integer distances
between zero and its length to be measure

Properties of CCS
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Simulation Result
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Figure: DOA Estimation Via least square and CCS based algorithms

We simulated a target tracking application based on DOA where
two platforms with d/l = 0.5 and 10 antennas each are taking
measurements of target with SNR= 15dB. The distance between
two ULAs is set to be 10km (~6miles). The solution includes
both least square algorithms using partial of observation (50%)
and compressive covariance sensing (CCS). Figure on the right
shows both algorithms can track the DOA with good
performance
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Simulation Result
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The Setup is save as the
last one.
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Simulation Result
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v PETRELS algorithm, the system randomly selects partial observations to conduct the
subspace estimation, which will increase the switching cost in the real application.

v In order to overcome switching cost, that system chooses the partial observation based
on the predefined selection rules instead of randomly selecting.

v Figure above shows the system can still maintain a good performance when system
switches every 20 data frames.
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Conclusion
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v An online subspace learning algorithm for direction of arrival (DOA)
is proposed.

v Only partial observation of antennas is needed to estimate the
subspace of the steering matrix.

v The rank of the subspace is not necessarily known at the beginning.

v CCS approach is also deployed in the DOA estimation.

v Future work will address the performance tradeoffs of spectral
efficiency for the tracking and localization under the false information
attack.
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