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Introduction and Motivation
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• Effective modulation classification is required for spectrum sensing in 
Cognitive Radio (CR) systems.

• Deep Belief Network (DBN)-based classier is an effective method for 
Automated Modulation Classification (AMC).

• Proposed method employs DBN classier on Spectrum Correlation 
Function (SCF) patterns of sensed signals.

• The main challenges of implementing the deep learning methods is the 
high computation complexity. 

• High computation complexity results in a high power and area 
requirements in a possible ASIC implementation.

• To overcome above, we propose a binarized - DBN to apply for SCF 
pattern classification.



Deep learning based AMC System
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Figure: System Architecture of our proposed deep learning-based AMC method.



SCF-based Feature Characterization Mechanism
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• The modulated signals are treated as cyclostationary processes that refer to the 
processes with periodic first-order statistics, such as mean and autocorrelation 
[1].

• Cyclic autocorrelation function (CAF) indicates the amount of correlation 
between different frequency shifted versions of a given signal and represents the 
fundamental parameters of their second order periodicity.

• CAF can be calculated as follows:
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SCF-based Feature Characterization Mechanism
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• Spectral Correlation Function (SCF) can be obtain by calculating the Fast Fourier
Transform of

• Modulated signal received from a receiver is used as the input for our proposed
SCF pattern generation mechanism which generates SCF patterns characterizing
unique features of the associated modulation techniques.
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Binarized-Deep Belief Network (DBN)

• Binarized-DBN used in our identification 
scheme is formed by stacking three 
conventional Restricted Boltzmann 
Machines (RBMs) and a Gaussian-
Bernoulli RBMs (GBRBMs) [2].

• Softmax layer is used as the output
layer of DBN.

• DBN is trained through semi-supervised
learning with SCF pattern data.

• Backpropagation fine-tuning algorithms
is modified to achieve binariezed-DBN
[3].
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Figure: Architecture of the used binarized-
DBN. Where Win,1 contains values -2-3, 0 and 
23 and other Weight matrices contain values -
1, 0, and 1. 



Deep Belief Network (DBN)
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• Conventional RBMs consist of one visible layer and one hidden layer of
binary units that do not have intra-layer connections [4].

• By training with unlabeled data, RBMs are able to learn the features
embodied by the training data.

• Energy function of a conventional RBM is as follows:
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Deep Belief Network (DBN)
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• Based on Energy function, the activation conditional probability
distributions of hidden and visible units of a RBM are shown in the
followings:

• The update rules for weights and biases of a RBM are as follows:
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Deep Belief Network (DBN)
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• Based on Energy function, the activation conditional probability
distributions of hidden and visible units of a RBM are shown in the
followings:

• GBRBM is a variation of RBM that has a visible layer comprised of real-
valued input units [5], [6].

• Energy function of the Gaussian Bernoulli RBM is defined as follows:

• GBRBM are trained by using the following update rules:
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Deep Belief Network (DBN)
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• Based on Energy function, the activation conditional probability
distributions of hidden and visible units of a RBM are shown in the
followings:

• GBRBM is a variation of RBM that has a visible layer comprised of real-
valued input units [5], [6].

• Energy function of the Gaussian Bernoulli RBM is defined as follows:
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Modified Fine-Tuning Algorithm for Binarizing 
DBN
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Simulation and Results
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• Proposed method is evaluated for identifying signals from 4FSK, 16QAM, 
BPSK, QPSK, and OFDM modulation schemes.

Figure: 3D-SCF patterns of (a) 4FSK, (b) 16QAM,  (c) BPSK, (d) QPSK, and (e) OFDM modulation techniques.

(a) (b) (c) 

(d) (e) 



Simulation and Results
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Figure: 2D-SCF patterns (XY view of 3D SCF pattern) of (a) 4FSK, (b) 16QAM,  (c) BPSK, (d) QPSK, and (e) 
OFDM modulation techniques.



Image Preprocessing
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• Gray scale images in the XY-plane of SCF patterns are first scaled to 64x64 
pixels images.

• Considering the symmetric and sparse property of the patterns, a triangle 
with 512 pixels is selected.

• Selected pixels are represented using a vector with length of 128 that is 
treated as a dimensionally reduced representation of the associated SCF 
pattern, which is used as the feature vector for machine learning.

Figure: Dimension reduction for the generated SCF patterns.



Results
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• We evaluate the effectiveness of our proposed method on a fading
channel by considering SCF pattern of simulated modulated signals in
environments with SNR varying from 0 dB to 5 dB. The performance of
binarized DBN, regular DBN, and MAXNET neural network method
discussed in [7].

• To further evaluate the performance we simulate multipath fading
channels and generate SCF patterns for different modulation schemes.
Multipath fading channels are simulated according to Rayleigh fading
channel model [8].



Comparison Results
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• The Accuracy of binarized DBN, regular DBN, and MAXNET neural network method, are compared 
for classifying 4FSK, 16QAM, BPSK, QPSK and OFDM modulation techniques.

• The DBN methods performs better in high noise environments for modulation detection. 

• The binarized DBN performs equally well compared with the regular DBN.

Figure: Performance comparison between binarized DBN (BDBN), DBN, and MAXNET methods with different SNR values.  



Multipath Fading
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• From this figure, we can observe that accuracy remain above 90% for all modulation schemes 
except QPSK from 2 paths to 10 paths fading channels.

• QPSK classification accuracy drops below 90% when more than 2 paths fading present but remain 
above 85% for all considered multipath fading channels.

Figure:  The accuracy of binarized DBN in multipath fading channels.



Conclusion
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• In this paper, we introduce an AMC method for cognitive radio.

• Our proposed framework consists of one SCF-based feature 
characterization mechanism and DBN-based identification scheme. 

• With the noise-resilient SCF patterns, our method is able to achieve high 
accuracy of classification even in the presence of environment noise. 

• DBN technique enables us to characterize the distinguishable features of 
the modulation techniques having similar associated SCF patterns. 

• Simulation results show that our propose methods can achieve accuracy 
above 90% in classifying the modulation techniques when SNR is > −2 dB.
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